Fight Fire with Fire: Towards Robust Recommender Systems via Adversarial Poisoning Training 理解

本文探讨了如何通过对抗性中毒训练(Adversarial Poisoning Training, APT)增强推荐系统的鲁棒性,特别是在矩阵分解的推荐系统背景下。作者指出常规的对抗性训练在参数上添加干扰的不足,并提出利用正向干扰生成EMR(Enhanced Margin Regularization)用户来最小化误差,以提升系统抗攻击能力。文章还涵盖了如何选择和评分EMR用户,以及APT的影响函数和矩阵分解的相关问题。" 114476285,10545539,Java Swing布局管理器详解,"['Java', 'Swing', '布局']
摘要由CSDN通过智能技术生成

一.作者思路

作者是为了增强使用推荐系统的鲁棒性并以矩阵分解为例,一般增强鲁棒性的方式有adversarial training,它的原理是在模型参数上添加干扰来训练达到增加推荐系统鲁棒性的目的,但是adversarial training有一定的缺陷(在参数上加干扰不太现实),所以作者反其道行之,在adversarial training上使用“正向”干扰来增加推荐系统的鲁棒性。

故逐一介绍以下三个方面的内容:

  • 推荐系统的矩阵分解相关内容;
  • adversarial training
  • adversarial poisoning training (APT)

1.使用矩阵分解的推荐系统

arg ⁡ min ⁡ U , V ∑ ( i , j ) ∈ Ω ( r i , j − U i V j T ) 2 + λ ( ∥ U ∥ F 2 + ∥ V ∥ F 2 ) (1) \arg \min_{U,V} \sum_{(i,j)\in \Omega}(r_{i,j}-U_iV_j^{\mathrm{T}})^2+\lambda(\|U\|_F^2+\|V\|_F^2) \tag 1 argU,Vmin(i,j)Ω(ri,jUiVjT)2+λ(UF2+VF2)(1)

2.adversarial training

min ⁡ θ R max ⁡ Δ , ∥ Δ ∥ ≤ ϵ ( L ( D , θ R ) + λ a d v L ( D , θ R + Δ ) ) (2) \min_{\theta_R} \max_{\Delta,\|\Delta\|\leq\epsilon}(L(D,\theta_R)+\lambda_{\mathrm{adv}}L(D,\theta_R+\Delta)) \tag2 θRminΔ,<

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值