深入探究升余弦滚降滤波器,及其用作匹配滤波(MATLAB的rcosdesign函数使用)

目录

一、rcosdesign函数设计升余弦脉冲或平方根升余弦脉冲

a)平方根升余弦脉冲

b)升余弦脉冲

c)根据函数表达式编写MATLAB:

二、脉冲调制的无符号间干扰(ISI)。

a)脉冲波形成

b)单极到双极(幅度调制)

c)脉冲调制

d)脉冲整形(传递滤波)

三、经过升余弦滚降滤波器后的眼图

a)滚降因子为1时的眼图:

b)滚降因子为0.75时的眼图:

c)滚降因子为0.25时的眼图:

d)四元幅度调制

四、匹配滤波


一对rcosdesign函数进行介绍并绘制波形,根据升余弦脉冲函数表达式编写MATLAB代码;

二介绍了脉冲调制,即一串脉冲序列与升余弦脉冲进行卷积,并通过波形图展示符号间无ISI;

三对不同滚降因子的升余弦脉冲眼图进行了描述;

四对匹配滤波进行简要说明,介绍了平方根升余弦脉冲(rrc)在通信系统中的应用。

一、rcosdesign函数设计升余弦脉冲或平方根升余弦脉冲

        可以使用MATLAB函数rcosdesign来生成升余弦脉冲或平方根升余弦脉冲。

       b = rcosdesign(beta,span,sps) 返回系数 b,该系数对应于具有由 beta 指定的衰减因子的平方根升余弦 FIR 滤波器。滤波器被截断在 span 个符号范围内,并且每个符号周期都包含 sps 个样本。 滤波器的阶次,即 sps * span 必须是偶数。滤波器的能量为 1。

        b = rcosdesign(beta,span,sps,shape) 当将 shape 设置为"sqrt"时,将返回根升余弦滤波器,见(a);当将 shape 设置为 "normal" 时,将返回升余弦FIR 滤波器,见(b)

a)平方根升余弦脉冲

        用一个例子说明:假设符号周期为1秒(Ts=1)。beta=0.25,span=6,sps=9,shape="sqrt":

  • beta=0.25即滚变因子为0.25;
  • span=6即跨越6个符号;
  • sps=9即每个符号周期包含9个样本;
  • shape="sqrt"即为平方根升余弦脉冲。

MATLAB代码如下:

Ts = 1; % 码元周期
% 单个符号范围的采样个数。
L = 9; %每个符号周期包含9个样本
r = 0.25; %滚降系数
t = -3:Ts/L:3; % 时间向量
pt = rcosdesign(r,6,L,'sqrt');%返回一个平方根升余弦滤波器。跨越6个符号

效果图和对图的解释如下:

解释:rcosdesign的第二个参数span为6,绿色①-⑥为横跨6个符号,rcosdesign的第三个参数sps为9,每个符号有9个点,例如①中有9个点。

可以看到成型脉冲在0*Ts的位置上有值,同时在其他整数*Ts上成型脉冲的值不为0,即有ISI。(即横坐标时间为-3、-2、-1、0、1、2、3的位置上,函数值都不为0

b)升余弦脉冲

将rcosdesign(r,6,L,'sqrt')中的sqrt改为rcosdesign(r,6,L,'normal'),绘制如下图:

  • beta=0.25即滚变因子为0.25;
  • span=6即跨越6个符号;
  • sps=9即每个符号周期包含9个样本;
  • shape="normal"即为升余弦脉冲。

解释:可以看到成型脉冲在0*Ts的位置上有值,同时在其他整数*Ts上成型脉冲的值为0,即无ISI。(即横坐标时间为-3、-2、-1、0、1、2、3的位置上,除了0位置上函数值不为0,其他位置上的值为0

c)根据函数表达式编写MATLAB:

升余弦滚降滤波器的函数为:

用MATLAB进行编写平方根升余弦滚降函数,代码中HR为升余弦滚降函数的频域GR和GT即为平方根升余弦滚降的频域

%平方根升余弦滚降函数
hr1=sin(pi*t/Ts)./(pi*t/Ts);
hr2=cos(alpha*pi*t/Ts)./(1-(2*alpha*t/Ts).^2);
hr=hr1.*hr2;
HR=abs(t2f(hr));
GT=sqrt(HR);
GR=GT;


function X=t2f(x)
global dt N
H=fft(x);
X=[H(N/2+1:N),H(1:N/2)]*dt;
end

二、脉冲调制的无符号间干扰(ISI)。

        脉冲调制时(即符号传输),需脉冲整形(插入0进行上采样)后与升余弦滚降滤波器卷积能实现无符号间干扰(ISI)。(注:以下是升余弦滚降滤波器(RC),不是根升余弦滚降滤波器(RRC)

a)脉冲波形成

        生成一个升余弦脉冲。

Ts = 1; % symbol duration
L = 9;
span = 6;
r = 0.25; % Roll-off factor
t_step = Ts/L;
pt = rcosdesign(r,span,L,'normal');

b)单极到双极(幅度调制)

        当𝑛th信息为1时,设置𝛼𝑛=1,当𝑛th信息为0时,我们设置𝛼𝑛=−1。即实现单极性变为双极性。即0 => -1, 1 => 1。

Ns = 2;%2个bit需要传输
data_bit =[0 1];
amp_modulated = 2*data_bit-1; % 0 => -1, 1 => 1

c)脉冲调制

        将信息每两个bit之间插入8个(L-1)个0。因为之后需要与升余弦滚降滤波器(脉冲成型滤波器)卷积,而升余弦滚降滤波器(脉冲成型滤波器)每个符号周期包含9个样本。

impulse_modulated = [];
for n = 1:Ns
    num_zeros =L-1;%延迟8bit,因为单个符号范围的采样个数为9
    delta_signal = [amp_modulated(n) zeros(1, num_zeros)];
    impulse_modulated = [impulse_modulated delta_signal];
end

d)脉冲整形(传递滤波)

        将脉冲调制(插入0)的信号与成型滤波器卷积。

tx_signal = conv(impulse_modulated, pt);

绘制图形如下:

解释:可以看到脉冲调制的波形,双极性、插入0;脉冲成型的波形,无码间串扰ISI。

因一个升余弦滤波器跨越6个符号,所以在抽样判决时​​​​​​需要去掉3个码元和后3个码元。即从0-2,5-8都不要了。

三、经过升余弦滚降滤波器后的眼图

        使用升余弦滤波器绘制眼图的部分关键代码如下。

t_step = Ts/L;%相邻采样点之间的间隔
Ns = 1000;%Ns为总信息bit数量

pt = rcosdesign(r,span,L,'normal');

figure
for k = 1:floor(Ns/3) % k是三个连续符号部分的索引。Ns为总信息bit数量
    tmp = tx_signal(  ((k-1)*3*L + 1) : k*3*L  ); %第k个连续的符号部分(波形)。
    plot(t_step*(0:(3*L-1)), tmp);
    axis([0 3 min(tx_signal) max(tx_signal)]);
    grid on; 
    hold on
    % pause  % 需要按下一个键继续绘图,或者您可以选择common out“暂停”,以一键查看最终结果。
end

        使用for循环进行绘制眼图,眼睛图是由持续3个连续符号周期的传输信号的样本绘制的。

下面比较不同滚降系数的眼图。

a)滚降因子为1时的眼图:

b)滚降因子为0.75时的眼图:

c)滚降因子为0.25时的眼图:

可以看到无论滚降因子是多少,在整数位置上,取值只有约为±0.37两种,对应的符号0和1。

结论:滚降系数α越大,升余弦滚降波形h(t)的拖尾衰减越快,对位定时精度要求越低。但是,滚降使带宽增大为,所以频带利用率降低。

d)四元幅度调制

        四元幅度调制:每个升余弦脉冲可以由四个不同的幅度调制。即每个符号的振幅为±1和±3。代码如下:

Ns = 1000;
data_bit = round(rand(1,Ns*2));%2000个
amp_modulated= 2*(2*data_bit(1:2:end)+data_bit(2:2:end)-1.5);    

滚降因子为0.5时,得到的眼图:

滚降因子为1时,得到的眼图:

可以看到无论滚降因子是多少,在整数位置上,取值只有约为四种,对应的符号为±1和±3。

四、匹配滤波

匹配滤波器:​​​​​​​使滤波器输出的信噪比在某一特定时刻达到最大,即接收端的信号强度与噪音强度的比值最大。对匹配滤波的理解可见:通信原理第3章 3.14匹配滤波器 - 知乎升余弦和根升余弦滤波器(SRRC,RRC)的单位脉冲响应-CSDN博客

在信号处理中,根升余弦滤波器(Raised-cosine filter, RRC ),也称平方根升余弦滤波器( square-root-raised-cosine filter,SRRC ),在数字通信系统中用作发送和接收滤波器,来进行匹配滤波。是升余弦滤波器频率响应的平方根。

符号为[-3,1,-1,-3,3],每个符号采样16个点,每个符号的脉冲成型波形跨越前后各4个符号。发射滤波器和匹配滤波器均为根升余弦滤波器。

clear;
close all;clc;
R=0.3; % roll-off factor
delay=4; % the group delay of the filter
sps=16; % oversampling factor
sym=[-3,1,-1,-3,3]; % symbol
len_x=length(sym);
xx=zeros(1,(len_x+2*delay)*sps);
for ii=delay+1:len_x+delay
    xx((ii-1)*sps+1)=sym(ii-delay); % oversampling 
end

h_rrc=rcosdesign(R,2*delay,sps,'sqrt'); % RRC filter
% h_rrc=h_rrc./sqrt(mean(h_rrc.^2));
% hs=h_rrc./max(h_rrc); % Amplitude Normalized
figure;plot(-delay:1/sps:delay,h_rrc);grid on;
send=conv(xx,h_rrc); % filter with RRC at the transmitter
send=send(delay*sps+1:end-delay*sps); % remove the delay

recv=conv(send,h_rrc); % filter with RRC at the receiver
recv=recv(delay*sps+1:end-delay*sps); % remove the delay

下图为经过发射滤波器后(即经过一次平方根升余弦滚降滤波器)

下图为经过匹配滤波器后(即经过两次平方根升余弦滚降滤波器)

解释:从图 1可以看出,滤波后波形在最佳采样点处的值并不等于采样点的值(即平方根升余弦滚降滤波器(RRC Filter)在处取值并不为零)。而经过接收端匹配滤波后,波形在最佳采样点处的值正好是发送符号的幅度值,这说明经过匹配滤波后ISI得到缓解。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

通信漫谈——试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值