【大模型LLM基础】自回归推理生成的原理以及什么是KV Cache?

本文详细解释了LLM(大型语言模型)的自回归推理过程中,如何通过KVCache优化Attention计算,从两阶段(Prefill和Decode)的角度阐述了这一技术,指出KVCache在生成式模型(如GPT和T5)中的关键作用以及它如何降低计算复杂度并影响内存使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LLM自回归推理文本生成原理

看到一篇最清晰的讲解,把两阶段(Prefill和Decode)的计算过程和维度变化写得很明白。读完这段文字应该就对LLM的生成过程有一个把握了。
原文:LLM Inference Unveiled: Survey and Roofline Model Insights [arXiv 2024.3]

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

哪里存在KV Cache?

KV cache发生在多个token生成的步骤中,并且只发生在decoder中(例如,decoder-only模型,如 GPT,或在encoder-decoder模型,如T5的decoder部分),BERT这样的encoder模型不是生成式模型(而是判别性模型),因此没有KV cache。

以下动图是GPT-2以自回归形式生成文本的动态图:
在这里插入图片描述
下图是Attention的标准计算方式:
在这里插入图片描述

什么是KV Cache?

通过缓存以前的键(Key)和值(Value),我们可以只关注计算新token的注意力。
如下图,每当来一个新的token q n e w q_{new} qnew时,计算得到新的 k n e w k_{new} knew v n e w v_{new} vnew,并将其拼接(concat)到缓存的

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.zwX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值