在数据科学领域,操纵和分析空间数据的能力开辟了一个充满可能性的世界。从优化运输路线到管理自然资源,应用范围广泛且多种多样。进入 GeoPandas,这是一个功能强大的 Python 库,使在 Python 中处理地理空间数据变得轻而易举。
GeoPandas 扩展了 pandas 使用的数据类型,以允许对几何类型进行空间操作。几何运算由 shapely 执行。GeoPandas 进一步依赖Fiona进行文件访问,依赖Matplotlib进行绘图。
GeoPandas 的应用与地理空间分析领域本身一样多种多样。城市规划者可以利用它来设计更高效的公共交通系统,环境科学家可以跟踪土地使用随时间的变化,企业可以根据地理数据优化物流。可能性确实是无限的。
为 GeoPandas 设置环境
在我们深入使用 GeoPandas 进行令人兴奋的地理空间分析世界之前,正确设置我们的环境至关重要。这涉及安装 GeoPandas 以及其最佳运行所需的一些其他依赖项。不用担心; 该过程很简单,我将逐步指导您完成该过程。
第1步:安装Python
首先,确保您的系统上安装了 Python。GeoPandas是一个Python库,所以Python是必须的。如果您尚未安装 Python,请从 Python 官方网站下载并按照适合您的操作系统的安装说明进行操作。
步骤 2:设置虚拟环境(可选但推荐)
为 Python 项目使用虚拟环境是一个很好的做法。这使您的项目的依赖项与其他项目分开,并避免任何潜在的冲突。您可以在终端或命令提示符中使用以下命令创建虚拟环境:
python -m venv geopandas_env
要激活虚拟环境,请使用以下命令:
- 在 Windows 上:
geopandas_env\Scripts\activate
- 在 macOS 和 Linux 上::
source geopandas_env/bin/activate
第 3 步:安装 GeoPandas 和依赖项
环境设置完毕后,就可以安装 GeoPandas 了。GeoPandas 有一些依赖项,例如Fiona
文件访问、Shapely
几何操作和matplotlib
绘图。conda
如果您安装了 Anaconda 或 Miniconda,安装 GeoPandas 及其所有依赖项的最简单方法是使用以下命令:
conda install geopandas
如果您喜欢使用pip
,可以使用以下命令安装 GeoPandas:
pip install geopandas
注意:安装 GeoPandaspip
可能需要您手动安装一些依赖项,尤其是在 Windows 上工作时。有关安装 GeoPandas 和处理任何潜在问题的详细说明,请参阅 GeoPandas 安装文档。
第 4 步:验证安装
为了确保一切设置正确,请打开 Python 解释器或 Jupyter Notebook 并尝试导入 GeoPandas:
import geopandas as gpd
如果您没有遇到任何错误,那么恭喜您!您已准备好开始使用 GeoPandas。
GeoPandas 基础知识:GeoSeries 和 GeoDataFrame
GeoPandas 基于 pandas 的数据结构构建,使 Python 中的地理空间数据处理变得直观、直接。GeoPandas 的核心是两个关键数据结构:GeoSeries
和GeoDataFrame
。了解这些对于充分利用 GeoPandas 进行地理空间分析至关重要。
GeoSeries:构建模块
AGeoSeries
本质上是一个向量,其中系列中的每个条目都是一组形状或几何对象。这些可以是点、线、多边形或 Shapely 支持的任何其他形状类型,Shapely 是一个用于操作和分析平面几何对象的 Python 库。
这是一个简单的例子来说明GeoSeries
:
from shapely.geometry import Point, Polygon
import geopandas as gpd
# Create a GeoSeries of points
points = gpd.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
# Visualize the points
points.plot()
在此示例中,我们创建GeoSeries
三个点,然后使用该.plot()
方法可视化这些点。处理和可视化几何数据的简单性使得 GeoPandas 的地理空间分析功能如此强大。
GeoDataFrame:空间数据框
AGeoDataFrame
是一个表格数据结构,包含一个GeoSeries
. 它类似于 pandas DataFrame,但具有包含几何信息的附加列。这个特殊列通常称为“几何”,包含几何对象(例如,点、线、多边形)并支持对数据集进行空间操作。
GeoDataFrame
下面介绍了如何从几何图形列表中创建Shapely
:
# Define some points and a polygon
polygon = Polygon([(0, 0), (1, 1), (1, 0)])
points = [Point(0.5, 0.5), Point(1.5, 1.5)]
# Create a GeoDataFrame
gdf = gpd.GeoDataFrame({'geometry': points + [polygon]})
# Plot the GeoDataFrame
gdf.plot(alpha=0.5, linewidth=2, edgecolor='k', color='cyan')
在此示例中,我们将点和多边形组合成一个GeoDataFrame
,然后绘制它们。、和参数用于自定义绘图的外观alpha
。linewidth
edgecolor