RuntimeError: all elements of input should be between 0 and 1

本文详细介绍了如何在PyTorch中使用BCELoss进行二分类问题的损失计算,并强调了输入数据规范化的重要性。通过实例演示了sigmoid或softmax归一化的必要性,以及交叉熵作为度量距离的工具在模型训练中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.nn.BCELoss(weight=None, reduction='mean')
这个类实现了二分类交叉熵。

使用这个类时要注意,输入值(不是分类)的范围要在 ( 0 , 1 ) (0,1)(0,1) 之间,否则会报错。
通常可以先使用 sigmoid或者softmax归一化 处理一下数据。

交叉熵描述了两个概率分布之间的距离,交叉熵越小说明两者之间越接近。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值