1 介绍
台湾大学林轩田教授机器学习基石
02 Learning to Answer Yes or No
学习利用感知机来处理二分类模型
2 自己实现
#-*- coding:utf-8 -*-
from numpy import *
import matplotlib.pyplot as plt
import operator
import time
def createTrainDataSet():#训练样本,第一个1为阈值对应的w,下同
trainData = [ [1, 1, 4],
[1, 2, 3],
[1, -2, 3],
[1, -2, 2],
[1, 0, 1],
[1, 1, 2]]
label = [1, 1, 1, -1, -1, -1]
return trainData, label
def createTestDataSet():#数据样本
testData = [ [1, 1, 1],
[1, 2, 0],
[1, 2, 4],
[1, 1, 3]]
return testData
def sigmoid(X):
X = float(X)
if X > 0:
return 1
elif X < 0:
return -1
else:
return 0
def pla(traindataIn,trainlabelIn):
traindata=mat(traindataIn)
trainlabel=mat(trainlabelIn).transpose()
m,n=shape(traindata)
w=ones((n,1))
while True:
iscompleted=True
for i in range(m):
if (sigmoid(dot(traindata[i],w))==trainlabel[i]):
continue
else:
iscompleted=False
w+=(trainlabel[i]*traindata[i]).transpose()
if iscompleted:
break
return w
def classify(inX,w):
result=sigmoid(sum(w*inX))
if result>0:
return 1
else:
return -1
def plotBestFit(w):
traindata,label=createTrainDataSet()
dataArr = array(traindata)
n = shape(dataArr)[0]
xcord1=[];ycord1=[]
xcord2=[];ycord2=[]
for i in range(n):
if int(label[i])==1:
xcord1.append(dataArr[i,1])
ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i, 1])
ycord2.append(dataArr[i, 2])
fig=plt.figure()
ax= fig.add_subplot(111)
ax.scatter(xcord1, ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2, ycord2,s=30,c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-w[0]-w[1] * x)/w[2]
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2')
plt.show()
def classifyall(datatest,w):
predict=[]
for data in datatest:
result=classify(data,w)
predict.append(result)
return predict
def main():
trainData,label=createTrainDataSet()
testdata=createTestDataSet()
w=pla(trainData,label)
result=classifyall(testdata,w)
plotBestFit(w)
print w
print result
if __name__=='__main__':
start = time.clock()
main()
end = time.clock()
print('finish all in %s' % str(end - start))
参考:http://www.mamicode.com/info-detail-1434773.html
3 利用sklean
这里涉及利用sklean来生成数据,训练,保存,评估模型以及利用模型来预测等例子。
#-*- coding:utf-8 -*-
from sklearn.datasets import make_classification
from matplotlib import pyplot as plt
from sklearn.linear_model import Perceptron
from sklearn.externals import joblib
import numpy as np
x,y = make_classification(n_samples=1000, n_features=2,n_redundant=0,n_informative=1,n_clusters_per_class=1)
#n_samples:生成样本的数量
#n_features=2:生成样本的特征数,特征数=n_informative() + n_redundant + n_repeated
#n_informative:多信息特征的个数
#n_redundant:冗余信息,informative特征的随机线性组合
#n_clusters_per_class :某一个类别是由几个cluster构成的
#训练数据和测试数据
x_data_train = x[:800,:]
x_data_test = x[800:,:]
y_data_train = y[:800]
y_data_test = y[800:]
#正例和反例
positive_x1 = [x[i,0] for i in range(1000) if y[i] == 1]
positive_x2 = [x[i,1] for i in range(1000) if y[i] == 1]
negetive_x1 = [x[i,0] for i in range(1000) if y[i] == 0]
negetive_x2 = [x[i,1] for i in range(1000) if y[i] == 0]
#定义感知机
clf = Perceptron(fit_intercept=False,n_iter=30,shuffle=False)
#使用训练数据进行训练
clf.fit(x_data_train,y_data_train)
#得到训练结果,权重矩阵
print(clf.coef_)
#输出为:[[-0.38478876,4.41537463]]
#超平面的截距,此处输出为:[0.]
print(clf.intercept_)
#保存模型
joblib.dump(clf,'pla.model')
#利用测试数据进行验证
CLF = joblib.load('pla.model')
acc = CLF.score(x_data_test,y_data_test)
print(acc)
#得到的输出结果为0.995,这个结果还不错吧。
#测试单个事例
print "[2.0,1.0] predict:",CLF.predict([2.0,1.0])
#画出正例和反例的散点图
plt.scatter(positive_x1,positive_x2,c='red')
plt.scatter(negetive_x1,negetive_x2,c='blue')
#画出超平面(在本例中即是一条直线)
line_x = np.arange(-4,4)
line_y = line_x * (-CLF.coef_[0][0] / CLF.coef_[0][1]) - CLF.intercept_
plt.plot(line_x,line_y)
plt.show()