第七章,相似矩阵及其应用,5-正定二次型


玩转线性代数系列的最后一篇: 玩转线性代数(40)正定二次型的笔记,相关证明以及例子见原文

讨论:一个实二次型,既可以通过正交变换化为标准形,也可以通过拉格朗日配方法化为标准形,显然,其标准形是不唯一的.那么标准形中所含项数是确定的吗?所有系数中正(负)系数的个数是否确定?如果都是正系数,二次型什么特点?这是我们这次要讨论的主要内容.

惯性定理

  1. 线性变换不唯一
    因为可以通过各种方法将二次型化为标准型,所以变换矩阵是不同的;

  2. 标准形不唯一
    对标准形而言,其系数可能是特征值,也可能不是,又规范型是特殊的标准形,所以标准型不唯一.

  3. 标准形中的项数不变
    二次型经可逆线性变后其矩阵为合同关系,故秩不变,所以标准形中的项数不变,是唯一的.

  4. 由惯性定理给出的标准形中正负系数不变.

定理(惯性定理)

设有二次型 f = x T A x f=x^TAx f=xTAx,它的秩为r,有两个可逆变换 x = C y x=Cy x=Cy x = P z x=Pz x=Pz,使
f = k 1 y 1 2 + k 2 y 2 2 + . . . + k n y n 2 ( k i ≠ 0 ) f=k_1y_1^2+k_2y_2^2+...+k_ny_n^2 \quad (k_i \ne 0) f=k1y12+k2y22+...+knyn2(ki=0)

f = λ 1 z 1 2 + λ 2 z 2 2 + . . . + λ n z n 2 ( λ i ≠ 0 ) f=\lambda_1z_1^2+\lambda_2z_2^2+...+\lambda_nz_n^2 \quad (\lambda_i \ne 0) f=λ1z12+λ2z22+...+λnzn2(λi=0)
k 1 , k 2 , . . . k r k_1,k_2,... k_r k1,k2,...kr中正数的个数与 λ 1 , λ 2 , . . . λ r \lambda_1,\lambda_2,...\lambda_r λ1,λ2,...λr中正数的个数相等。
注 1) 标准形中正系数的个数称为正惯性指数,负系数的个数称为负惯性指数。正惯性指数相同,根据总项数相同可知负惯性指数也相同。
2) 若二次型f的正惯性指数为p,秩为r,则f的规范形便可确定为:
f = y 1 2 + . . . + y p 2 − y p + 1 2 − . . . − y r 2 f=y_1^2+...+y_p^2-y_{p+1}^2-...-y_r^2 f=y12+...+yp2yp+12...yr2
若不考虑次序,按先正后负排列,可以认为规范型的形式是唯一的。

正(负)定二次型

定义

设有二次型 f = x T A x f=x^TAx f=xTAx,如果对任何 x ≠ 0 x\ne 0 x=0,都有 f ( x ) > 0 ( f ( 0 ) = 0 ) f(x)> 0\quad (f(0)=0) f(x)>0(f(0)=0),则f是正定二次型,并称对称矩阵A是正定的;
如果对任何 x ≠ 0 x\ne 0 x=0,都有 f ( x ) < 0 f(x)< 0 f(x)<0,则f是负定二次型,并称对称矩阵A是负定的。

判定

标准形系数判别法

定理:实二次型 f = x T A x f=x^TAx f=xTAx为正定 ⇔ \Leftrightarrow 它的正惯性指数等于n(它的标准形的n个系数全为正,若规范形的系数全为1);
实二次型 f = x T A x f=x^TAx f=xTAx为负定 ⇔ \Leftrightarrow 它的负惯性指数等于n(它的标准形的n个系数全为负,若规范形的系数全为-1)
证见原文。
推论: 对称矩阵A为正定的充要条件是:A的特征值全为正。为负定的充要条件是:A的特征值全为负。

顺次主子式判别法

郝尔维茨定理:对称矩阵A为正定的充要条件是:A的各项主子式为正,即:
a 11 > 0 , ∣ a 11 a 12 a 21 a 22 ∣ > 0 , . . . , ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ > 0 ; a_{11}>0, \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} >0, \quad ... , \begin{vmatrix} a_{11}& \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}>0; a11>0, a11a21a12a22 >0,..., a11an1a1nann >0;
对称矩阵A为负定的充要条件是:奇数阶主子式为负,偶数阶主子式为正,即:
( − 1 ) r ∣ a 11 ⋯ a 1 r ⋮ ⋮ a r 1 ⋯ a r r ∣ > 0 , ( r = 1 , 2 , . . . , n ) (-1)^r \begin{vmatrix} a_{11}& \cdots & a_{1r} \\ \vdots & & \vdots \\ a_{r1} & \cdots & a_{rr} \end{vmatrix}>0, \quad (r =1,2,...,n) (1)r a11ar1a1rarr >0,(r=1,2,...,n)
注:若给出二次型,一般是利用此定理判断其正定性。

应用示例

优化问题,见原文

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值