机器学习:Kmeans聚类算法总结及GPU配置加速demo

Kmeans算法介绍


  • 算法简介

    • 该算法是一种贪心策略,初始化时随机选取N个质心,不断迭代,让周围元素到质心的误差累积和最小,从而找到质心或者说对应的簇。
  • 核心步骤

    • 先得到待分类的大量数据(多维向量)
    • 初步尝试得到最佳的分类簇数量
    • 根据最佳簇数量和随机起点作聚类
    • 得到最佳簇划分的码矢,将其编制成固定顺序
    • 计算得到个别数据对应的index,即码矢的索引序号
    • 码矢的集合组成码本
  • 评判指标

    • 簇内相似度高,即被分类到某一簇的样本,离簇的距离足够小
    • 簇间相似度低,即每个簇的差距较大,能表征更多信息

下面Python代码实践总结如下,分别布置在CPU和GPU上。

版本1:利用sklearn的kmeans算法,CPU上跑


  • 好处

    • 快速调用机器学习库,sklearn
    • 适合进行码本训练和简单分类任务
  • 劣势

    • 问题当数据量大时,迭代速度较慢
  • 参考链接:here

import module_kmeans
dir_in = r"/home/work/codebook_train_data/"
# module_kmeans.sf_kmeans(dir_in)

对应的调用脚本文件:sf_kmeans.py,内部代码如下:

# -*- coding: utf-8 -*-
import sys
import os
import wave
from scipy.io import wavfile
import numpy as np

import pandas as pd
import matplotlib.pyplot as plt

# error
# from sklearn.datasets.samples_generator import make_blobs
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans


def sf_kmeans(path):
    data = pd.read_csv(path + 'sf_taylor.csv')
    X = data.iloc[:, 0:16]  # get low 16 values

    # X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)
    # plt.scatter(X[:, 0], X[:, 1])
    # plt.close()

    # plt.figure()
    max_range = 1025
    wcss = []
    for i in range(1, max_range):
        kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
        kmeans.fit(X)
        wcss.append(kmeans.inertia_)
    plt.figure()
    plt.grid(linestyle='-.')
    plt.title('Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.plot(range(1, max_range), wcss)
    plt.show()

    plt.figure()
    kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init=10, random_state=0)
    pred_y = kmeans.fit_predict(X)
    plt.grid(linestyle='-.')
    plt.scatter(X[:, 0], X[:, 1])
    plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red')
    plt.show()

    print(kmeans.labels_)
    print(kmeans.cluster_centers_)

    print('done!')

版本2:利用网上的kmeans算法实现,GPU上跑


  • 好处:
    • 能解决迭代速度问题
  • 劣势:
    • 随之而来的问题是,该算法实现精度较差
    • 无法达到与本地CPU跑的sklearn的kmeans算法效果
  • 参考链接:here
import torch
import time
from tqdm import tqdm
import pandas as pd

# import pdb # for debug
# pdb.set_trace()

class KMEANS:
    def __init__(self, n_clusters=20, max_iter=None, verbose=True,device = torch.device("cuda")):
        self.n_cluster = n_clusters # n_clusters > 0
        self.n_clusters = n_clusters
        self.labels = None
        self.dists = None  # shape: [x.shape[0],n_cluster]
        self.centers = None
        self.variation = torch.Tensor([float("Inf")]).to(device)
        self.verbose = verbose
        self.started = False
        self.representative_samples = None
        self.max_iter = max_iter
        self.count = 0
        self.device = device

    def fit(self, x):
        # 随机选择初始中心点,想更快的收敛速度可以借鉴sklearn中的kmeans++初始化方法
        init_row = torch.randint(0, x.shape[0], (self.n_clusters,)).to(self.device)
        init_points = x[init_row]
        self.centers = init_points
        while True:
            # 聚类标记
            self.nearest_center(x)
            # 更新中心点
            self.update_center(x)
            if self.verbose:
                print(self.variation, torch.argmin(self.dists, (0)))
            if torch.abs(self.variation) < 1e-3 and self.max_iter is None:
                break
            elif self.max_iter is not None and self.count == self.max_iter:
                break

            self.count += 1

        self.representative_sample()

    def nearest_center(self, x):
        labels = torch.empty((x.shape[0],)).long().to(self.device)
        dists = torch.empty((0, self.n_clusters)).to(self.device)
        for i, sample in enumerate(x):
            dist = torch.sum(torch.mul(sample - self.centers, sample - self.centers), (1))
            labels[i] = torch.argmin(dist)
            dists = torch.cat([dists, dist.unsqueeze(0)], (0))
        self.labels = labels
        if self.started:
            self.variation = torch.sum(self.dists - dists)
        self.dists = dists
        self.started = True

    def update_center(self, x):
        centers = torch.empty((0, x.shape[1])).to(self.device)
        for i in range(self.n_clusters):
            mask = self.labels == i
            cluster_samples = x[mask]
            centers = torch.cat([centers, torch.mean(cluster_samples, (0)).unsqueeze(0)], (0))
        self.centers = centers

    def representative_sample(self):
        # 查找距离中心点最近的样本,作为聚类的代表样本,更加直观
        self.representative_samples = torch.argmin(self.dists, (0))

        
def sf_kmeans(matrix,device):
    max_range = 4
    wcss = []
    gpu_speeds = []

    print(matrix.shape)
    print(matrix)
    print('\n')
    
    for i in tqdm(range(1, max_range + 1)):
#         print('%d'%(i), end='\r')
        a = time.time()
        kmeans = KMEANS(n_clusters=i, max_iter=None, verbose=False, device=device)
        kmeans.fit(matrix)
#         wcss.append(kmeans.inertia_)
        wcss.append(torch.sum(kmeans.dists))
#         print(torch.sum(kmeans.dists) / k)
#         print(kmeans.variation)
        b = time.time()
        speed = (b - a) / kmeans.count
        gpu_speeds.append(speed)
        print(kmeans.centers)
        print(kmeans.dists)
        print(torch.sum(kmeans.dists))
        print('\n')
          
#     plt.figure()
    plt.grid(linestyle='-.')
    plt.title('Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.plot(range(max_range), wcss)
    plt.show()
    
    plt.figure()
    l2, = plt.plot(range(max_range), gpu_speeds, color='g',label = "GPU")
    plt.xlabel("num_features")
    plt.ylabel("speed(s/iter)")
    plt.title("Speed with cuda")
    plt.legend(handles = [l2], labels = ['GPU'], loc='best')


def choose_device(cuda=False):
    if cuda:
        device = torch.device("cuda:0")
    else:
        device = torch.device("cpu")
    return device


if __name__ == "__main__":
    import matplotlib.pyplot as plt
    
    dir_in = r"/home/work/codebook_train_data/"
#     data = pd.read_csv(dir_in + 'sf_taylor.csv')
#     df = data.iloc[:, 0:16]  # get low 16 values
#     print(df.dtypes)
#     print(type(data))
#     np_data = df.values
    
    data = pd.read_csv(dir_in + 'Mall_Customers.csv')
    np_data = data.iloc[1 : 6, [3, 4]].values
    
    device = choose_device(True)
    matrix = torch.from_numpy(np_data).to(device)
    matrix = matrix.float()
#     matrix = torch.rand((10000, 10)).to(device)
    
    sf_kmeans(matrix, device)

版本3:利用Pytorch的kmeans包实现,GPU上跑


调用Pytorch现成的kmeans包,进行修改。

  • 好处:

    • 能解决迭代速度问题
    • 达到与sklearn相同的精度结果
  • package name:kmeans-pytorch

  • 相关资料:ref1

  • 相关资料:ref2

  • 以下代码含画图及对比

!pip install kmeans-pytorch
import torch
import numpy as np
import time
# from tqdm import tqdm
import pandas as pd
# from kmeans_pytorch import kmeans 
from module_pytorch_kmeans import kmeans
import matplotlib.pyplot as plt

def choose_device(cuda=False):
    if cuda:
        device = torch.device("cuda:0")
    else:
        device = torch.device("cpu")
    return device


def sf_kmeans(matrix,device, dims):
    max_range = 40
    wcss = []
    gpu_speeds = []

#     print(matrix.shape)
#     print(matrix)
#     print('\n')
    
    # data
#     data_size, dims, num_clusters = 1000, 2, 3
#     x = np.random.randn(data_size, dims) / 6
#     x = torch.from_numpy(x)

    
    for n_clusters in range(2, max_range + 1):
        a = time.time()
        
        # kmeans
        cluster_ids_x, cluster_centers, iters = kmeans(
        X=matrix, num_clusters=n_clusters, distance='euclidean', tqdm_flag=False, device=torch.device('cuda:0')
        )
#         iter_limit=500, 

#         print(cluster_ids_x)
#         print(cluster_centers)
#         print('\n')
        dists = torch.empty((0, dims)).to(device)
        for i, sample in enumerate(matrix):
            # 0按行追加扩展, 1按列追加扩展
            id = cluster_ids_x[i]
            dist = torch.mul(sample.to(device) - cluster_centers[id].to(device), sample - cluster_centers[id].to(device))
            dists = torch.cat([dists, dist.unsqueeze(0)], (0))
        
        print(torch.sum(dists))
#         print('\r{}'.format(torch.sum(dists)), end='')
        wcss.append(torch.sum(dists))
        
        b = time.time()
        speed = (b - a) / iters
        gpu_speeds.append(speed)
#         print('\n')

#     print(wcss)
#     print(gpu_speeds)
        
#     plt.figure()
    plt.grid(linestyle='-.')
    plt.title('Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.plot(range(max_range - 1), wcss)
    plt.show()
    
    plt.figure()
    l2, = plt.plot(range(max_range - 1), gpu_speeds, color='g',label = "GPU")
    plt.xlabel("num_features")
    plt.ylabel("speed(s/iter)")
    plt.title("Speed with cuda")
    plt.legend(handles = [l2], labels = ['GPU'], loc='best')


if __name__ == "__main__":
    
    
    dir_in = r"/home/work/codebook_train_data/"
    data = pd.read_csv(dir_in + 'sf_large.csv')
    dims = 8

    df = data.iloc[:, 0:dims]  # get low 16 values
#     print(df.dtypes)
#     print(type(data))
    np_data = df.values
    
#     data = pd.read_csv(dir_in + 'Mall_Customers.csv')
#     np_data = data.iloc[1 : 6, [3, 4]].values
    
    device = choose_device(True)
    matrix = torch.from_numpy(np_data).to(device)
    matrix = matrix.float()
    
#     matrix = torch.rand((10000, 10)).to(device)
    
    sf_kmeans(matrix, device, dims)

输出提示如下:

tensor(3.3288e+08, device=‘cuda:0’)
tensor(2.3872e+08, device=‘cuda:0’)
tensor(1.9115e+08, device=‘cuda:0’)
tensor(1.6357e+08, device=‘cuda:0’)
tensor(1.4616e+08, device=‘cuda:0’)

在这里插入图片描述

相关资料


  1. K-means Clustering Python Example
  2. K-means(K均值)
  3. scikit-learn之kmeans应用及问题
  4. 用scikit-learn学习K-Means聚类
  5. kmcuda: GPU加速 Kmeans
  6. In-depth Intuition of K-Means Clustering Algorithm in Machine Learning
  • 6
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值