非线性动力学与混沌

part1 一维流

几何思维

对于简单的一阶非线性系统 x=sin(x) ,可以在相平面上画出关于x和x的导数之间的关系。若x的导数作为y轴,x作为x轴,则在x轴上方,x的导数为正值,在x轴的运动向右,反之向左。在x的导数为零处,没有流动,称为不动点。稳定的不动点称为吸引子,不稳定的称为排斥子。

稳定性

随时间变化,相点根据函数x(t)沿着x轴运动,x(t)称为轨迹。
流汇合的不动点是稳定的不动点。
几个问题:
1 x=x2+1
2 rc串联电路

种群模型

$N=rN

稳定性的另一判断方法

线性化(泰勒级数近似),当一阶导数为负,不动点不稳定。

解的存在性和唯一性

爆炸现象:解在有限时间达到无穷大。
没有周期解,在直线上流只有一个方向。
在物理系统中,一维流的情况可以发生在过阻尼的系统中

求解方法

欧拉法 RK RK4 可用平台 matlab mma maple…

分岔

参数发生变化,流的定型结构发生改变

  • 鞍结分岔

当鞍部受参数影响与x轴没有交点,产生一个交点,两个交点。(抛物线上下移动)
分岔图
x’=0,参数r与变量x的关系图.

  • 跨临界分岔

x=rxx2
(抛物线过定点)
在参数变化到两个不动点相等后,稳定的不动点发生交换,稳定性交换。
例子:激光阈值

  • 叉式分岔

特征是对称性分岔,分为超临界分岔 x=rxx3 ,亚临界分岔 x=rx+x3
超临界分岔是连续变化的过程,亚临界分岔会出现突变。
超临界分岔:
r<0 :原点是唯一的不动点,是稳定的。
r=0 :原点附近x’很小,x的趋近很慢,称为临界减慢。
r>0 :原点不稳定,出现两个稳定的不动点。

亚临界分岔:
r<0 :原点是稳定的,原点两侧的不动点不稳定。
r=0 :原点是唯一的不动点,是稳点的。
r>0 :原点不稳定。
施密特触发器

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页