三种非线性变化Relu Sigmoid Tanh Tensorboard可视化

import torch
import torchvision.datasets
from torch import nn
#
# m = nn.ReLU()
# nput = torch.randn(2)
# utput = m(input)


#An implementation of CReLU - https://arxiv.org/abs/1603.05201

# m = nn.ReLU()
# input = torch.randn(2).unsqueeze(0)
# output = torch.cat((m(input), m(-input)))
# print(input)
# print(output)
from torch.nn import Sigmoid,Tanh,Softmax
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input=torch.tensor([[1,-0.5],
                   [-1,3]])

input=torch.reshape(input,(-1,1,2,2))
print(input.shape)

dataset=torchvision.datasets.CIFAR10("../data",train=False,download=True,transform=torchvision.transforms.ToTensor())
dataloader=DataLoader(dataset,batch_size=64)
class Aoxiang(nn.Module):
    def __init__(self):
        super(Aoxiang, self).__init__()
        self.relu1=torch.nn.ReLU(inplace=False)#inplace=False是否对变量进行一次替换
        self.sigmoid1=Sigmoid()
        self.tanh1=Tanh()
    def forward(self,input):
        output=self.sigmoid1(input)
        return output
    def forward1(self,input):
        output=self.tanh1(input)
        return output

writer=SummaryWriter("../logs_Tanh")
aoxiang =Aoxiang()
step=0
for data in dataloader:
    imgs,target=data
    writer.add_images("input",imgs,global_step=step)
    output=aoxiang.forward1(imgs)
    writer.add_images("output", output, global_step=step)
    step=step+1


sigmoid


        relu



Tanh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值