永磁同步电机模型之坐标变换

前言

本文主要介绍永磁电机模型的坐标变化极其推导过程。本文主要参考资料:

  • 哈肯.工业运动控制——电机选择、驱动器和控制器应用.机械工业出版社
  • 永磁同步电机常见形式状态方程推导 传送门
  • 陈伯时.自动控制系统——电力拖动控制.中央广播电视大学出版社
  • 付兴贺,陈 锐.电机中ABC 到dq0 坐标变换的梳理与辨析

旋转磁场

在直流电机中,通过电刷与换向器切换转子的电流方向,让电机转子旋转起来。而在无刷电机或者永磁同步电机中,没有电刷或换向器,而转子通常为永磁体。这个时候需要在定子中通入正弦电流,从而形成旋转磁场,让永磁体在旋转磁场的推动下旋转起来。下面,重点介绍旋转磁场如何形成。

下图为永磁同步电机的结构示意图:
在这里插入图片描述
可以将定子模型简化为下图:
在这里插入图片描述
其中U1和U2,V1和V2,W1和W2形成三组空间位置相差120度的绕组。相同组的绕组内通入的电流相同,形成相同方向的磁场。
其抽象图如下图所示:
在这里插入图片描述
则分别在U,V,W通入三相交流电

{ i U = I s i n ( θ ) i V = I s i n ( θ + 2 π 3 ) i W = I s i n ( θ − 2 π 3 ) \left\{ \begin{aligned} & i_\mathrm{U}=I\mathrm{sin}(\theta) \\ & i_\mathrm{V}=I\mathrm{sin}(\theta + \frac{2\pi}{3})\\ & i_\mathrm{W}=I\mathrm{sin}(\theta - \frac{2\pi}{3}) \end{aligned} \right. iU=Isin(θ)iV=Isin(θ+32π)iW=Isin(θ32π)

如下图所示:
请添加图片描述
在每60度选取一点,可以发现,磁场确实随着电流变化而旋转。上图形象的展示了这一点。另外,也可以提供数学证明。

因为定子绕组是通过导线缠绕而成,可以将其视作电感, 根据公式:
λ = L i \lambda=Li λ=Li

其中, λ \lambda λ表示磁链, L L L为定子绕组电感, i i i为三项电流。

则可以知道,磁链与电流成正比,所以,可以将三相交流电产生的磁通用下式表示:

{ λ U = L I s i n ( θ ) λ V = L I s i n ( θ + 2 π 3 ) λ W = L I s i n ( θ − 2 π 3 ) \left\{ \begin{aligned} & \lambda_\mathrm{U}=LI\mathrm{sin}(\theta) \\ & \lambda_\mathrm{V}=LI\mathrm{sin}(\theta + \frac{2\pi}{3})\\ & \lambda_\mathrm{W}=LI\mathrm{sin}(\theta - \frac{2\pi}{3}) \end{aligned} \right. λU=LIsin(θ)λV=LIsin(θ+32π)λW=LIsin(θ32π)

为了方便分析,可以建立下图( α − β \alpha-\beta αβ坐标系)。因为 L I LI LI为常数,可以设为 F m a x F_{\mathrm{max}} Fmax
在这里插入图片描述
则可以得到三相叠加在 α \alpha α轴的分量为:
λ α = λ U c o s 0 + λ V c o s ( 2 3 π ) + λ W c o s ( − 2 3 π ) = F m a x s i n θ + F m a x s i n ( θ + 2 3 π ) c o s ( 2 3 π ) + F m a x s i n ( θ − 2 3 π ) c o s ( − 2 3 π ) = F m a x { s i n θ + c o s ( 2 3 π ) [ s i n ( θ + 2 3 π ) + s i n ( θ − 2 3 π ) ] } \begin{aligned} \lambda_\alpha=& \lambda_\mathrm{U}\mathrm{cos}0+ \lambda_\mathrm{V}\mathrm{cos} \left( \frac{2}{3}\pi\right)+\lambda_\mathrm{W}\mathrm{cos} \left (-\frac{2}{3}\pi \right )\\ =&F_{\mathrm{max}}\mathrm{sin}\theta+ F_{\mathrm{max}}\mathrm{sin}\left( \theta +\frac{2}{3}\pi \right)\mathrm{cos} \left( \frac{2}{3}\pi\right)+ F_{\mathrm{max}}\mathrm{sin}\left( \theta -\frac{2}{3}\pi \right)\mathrm{cos} \left( -\frac{2}{3}\pi\right)\\ =&F_{\mathrm{max}}\left\{ \mathrm{sin}\theta+\mathrm{cos} \left( \frac{2}{3}\pi\right)\left[ \mathrm{sin}\left( \theta +\frac{2}{3}\pi \right)+ \mathrm{sin}\left( \theta -\frac{2}{3}\pi \right)\right ] \right\}\\ \end{aligned} λα===λUcos0+λVcos(32π)+λWcos(32π)Fmaxsinθ+Fmaxsin(θ+32π)cos(32π)+Fmaxsin(θ32π)cos(32π)Fmax{sinθ+cos(32π)[sin(θ+32π)+sin(θ32π)]}

β \beta β轴的分量为:
λ β = λ U s i n 0 + λ V s i n ( 2 3 π ) + λ W s i n ( − 2 3 π ) = F m a x s i n ( θ + 2 3 π ) s i n ( 2 3 π ) + F m a x s i n ( θ − 2 3 π ) s i n ( − 2 3 π ) = F m a x s i n ( 2 3 π ) [ s i n ( θ + 2 3 π ) − s i n ( θ − 2 3 π ) ] ) \begin{aligned} \lambda_\beta & = \lambda_\mathrm{U}\mathrm{sin}0+ \lambda_\mathrm{V}\mathrm{sin}(\frac{2}{3}\pi)+\lambda_\mathrm{W}\mathrm{sin}(-\frac{2}{3}\pi)\\ & = F_{\mathrm{max}}\mathrm{sin}\left( \theta +\frac{2}{3}\pi \right)\mathrm{sin} \left( \frac{2}{3}\pi\right)+ F_{\mathrm{max}}\mathrm{sin}\left( \theta -\frac{2}{3}\pi \right)\mathrm{sin} \left( -\frac{2}{3}\pi\right)\\ & = F_{\mathrm{max}}\mathrm{sin} \left( \frac{2}{3}\pi\right)\left[ \mathrm{sin}\left( \theta +\frac{2}{3}\pi \right)- \mathrm{sin}\left( \theta -\frac{2}{3}\pi \right)\right ]\\ \end{aligned}) λβ=λUsin0+λVsin(32π)+λWsin(32π)=Fmaxsin(θ+32π)sin(32π)+Fmaxsin(θ32π)sin(32π)=Fmaxsin(32π)[sin(θ+32π)sin(θ32π)])

通过和差化积公式:
s i n α + s i n β = 2 s i n α + β 2 c o s α − β 2 s i n α − s i n β = 2 s i n α − β 2 c o s α + β 2 \begin{aligned} \mathrm{sin} \alpha +\mathrm{sin} \beta =2\mathrm{sin}\frac{\alpha +\beta }{2}\mathrm{cos}\frac{\alpha -\beta }{2} \\ \mathrm{sin} \alpha -\mathrm{sin} \beta =2\mathrm{sin}\frac{\alpha -\beta }{2}\mathrm{cos}\frac{\alpha +\beta }{2} \end{aligned} sinα+sinβ=2sin2α+βcos2αβsinαsinβ=2sin2αβcos2α+β
可得:
s i n ( θ + 2 3 π ) + s i n ( θ − 2 3 π ) = 2 s i n θ c o s 2 3 π s i n ( θ + 2 3 π ) − s i n ( θ − 2 3 π ) = 2 c o s θ s i n 2 3 π \begin{aligned} \mathrm{sin}\left( \theta +\frac{2}{3}\pi \right) +\mathrm{sin}\left( \theta -\frac{2}{3}\pi \right) =2\mathrm{sin}\theta \mathrm{cos} \frac{2}{3}\pi \\ \mathrm{sin}\left( \theta +\frac{2}{3}\pi \right) -\mathrm{sin}\left( \theta -\frac{2}{3}\pi \right) =2\mathrm{cos}\theta \mathrm{sin} \frac{2}{3}\pi \\ \end{aligned} sin(θ+32π)+sin(θ32π)=2sinθcos32πsin(θ+32π)sin(θ32π)=2cosθsin32π
所以
λ α = F m a x { s i n θ + c o s ( 2 3 π ) [ s i n ( θ + 2 3 π ) + s i n ( θ − 2 3 π ) ] } = F m a x s i n θ + 2 F m a x [ c o s ( 2 3 π ) ] 2 s i n θ = 3 2 F m a x s i n θ λ β = F m a x s i n ( 2 3 π ) [ s i n ( θ + 2 3 π ) − s i n ( θ − 2 3 π ) ] = 2 F m a x [ s i n ( 2 3 π ) ] 2 c o s θ = 3 2 F m a x c o s θ \begin{aligned} \lambda_\alpha & = F_{\mathrm{max}}\left\{ \mathrm{sin}\theta+\mathrm{cos} \left( \frac{2}{3}\pi\right)\left[ \mathrm{sin}\left( \theta +\frac{2}{3}\pi \right)+ \mathrm{sin}\left( \theta -\frac{2}{3}\pi \right)\right ] \right\}\\ & = F_{\mathrm{max}} \mathrm{sin}\theta+2F_{\mathrm{max}} \left [\mathrm{cos} \left( \frac{2}{3}\pi\right)\right]^2\mathrm{sin}\theta \\ & = \frac{3}{2}F_{\mathrm{max}}\mathrm{sin}\theta\\ \lambda_\beta & = F_{\mathrm{max}}\mathrm{sin} \left( \frac{2}{3}\pi\right)\left[ \mathrm{sin}\left( \theta +\frac{2}{3}\pi \right)- \mathrm{sin}\left( \theta -\frac{2}{3}\pi \right)\right ]\\ & = 2F_{\mathrm{max}}\left[\mathrm{sin} \left( \frac{2}{3}\pi\right)\right ]^2 \mathrm{cos}\theta \\ & = \frac{3}{2} F_{\mathrm{max}}\mathrm{cos} \theta \end{aligned} λαλβ=Fmax{sinθ+cos(32π)[sin(θ+32π)+sin(θ32π)]}=Fmaxsinθ+2Fmax[cos(32π)]2sinθ=23Fmaxsinθ=Fmaxsin(32π)[sin(θ+32π)sin(θ32π)]=2Fmax[sin(32π)]2cosθ=23Fmaxcosθ
由此可见,当按照上述线序时,电动机磁场顺时针旋转。

clark变换和park变换

坐标变换的目的

在直流电机,励磁绕组轴线方向为磁通方向,该方向为直轴(d轴),电枢绕组产生的电枢磁动势轴线方向则被定义为交轴(q轴)。在直流电机中,通过电刷换向器等硬件器件,将电枢电动势的轴线限定在q轴,所以,直流电机模型比较简单。而在交流电机中,主磁通和电流都是随着时间变化的函数,其数学模型复杂。采用坐标变换的目的就是将交流电机的物理模型等效为直流电机。

坐标系

在永磁同步电机中,有三个空间坐标系。

  • 定子三项绕组形成的ABC坐标系
  • 等效的两相绕组的 α β \alpha\beta αβ坐标系
  • 和转子同步旋转的dq坐标系
    在这里插入图片描述

坐标转换的最终结果就是将ABC三项坐标系转换为dq坐标系。在不同的文献中,对于clark变换和park变换的定义并不相同。最常见的用法为:

clark变换:将三相静止变换成两相静止,即有ABC坐标系变换成 α β \alpha\beta αβ坐标系。也称为3s/2s变换
park变换:将静止两相坐标转换成旋转坐标,即由 α β \alpha\beta αβ坐标系变换成dq坐标系。也称为2s/2r变换

3s/2s变换(clark变换)

在3s/2s变换中,分成等幅值变换等功率变换两种变换形式。其实二者的区别并不是很大,只是系数的变化。在上文证明磁场旋转的时候其实已经使用了clark变换了。
在这里插入图片描述
F α = k [ F A + F B c o s ( 2 π 3 ) + F C c o s ( − 2 π 3 ) ] = k ( F A − 1 2 F B − 1 2 F C ) F β = k [ F B s i n ( 2 π 3 ) + F C s i n ( − 2 π 3 ) ] = k ( 3 2 F B − 3 2 F C ) \begin{aligned} F_\alpha & = k \left [ F_A+F_B \mathrm{cos} \left( \frac{2\pi}{3} \right) +F_C \mathrm{cos} \left( -\frac{2\pi}{3} \right) \right]\\ &=k\left ( F_A-\frac{1}{2}F_B-\frac{1}{2}F_C \right )\\ F_\beta & = k \left [ F_B \mathrm{sin} \left( \frac{2\pi}{3} \right) +F_C \mathrm{sin} \left( -\frac{2\pi}{3} \right) \right]\\ &=k\left (\frac{\sqrt 3}{2}F_B-\frac{\sqrt {3} }{2}F_C \right ) \end{aligned} FαFβ=k[FA+FBcos(32π)+FCcos(32π)]=k(FA21FB21FC)=k[FBsin(32π)+FCsin(32π)]=k(23 FB23 FC)
写成矩阵方式:

[ F A F B ] = k [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ F A F B F C ] \begin{aligned} \begin{bmatrix} F_A\\[1em] F_B \end{bmatrix} = k\begin{bmatrix} 1 &-\dfrac{1}{2} &-\dfrac{1}{2} \\[1em] 0 & \dfrac{\sqrt[]{3} }{2} &-\dfrac{\sqrt[]{3} }{2} \end{bmatrix} \begin{bmatrix} F_A \\[1em] F_B \\[1em] F_C \\ \end{bmatrix} \end{aligned} FAFB=k102123 2123 FAFBFC

等幅变换

[ F α F β ] = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ F A F B F C ] \begin{aligned} \begin{bmatrix} F_\alpha \\[1em]{\color{Blue} {\color{Brown} } } F_\beta \end{bmatrix} =\frac{2}{3} \begin{bmatrix} 1 &-\dfrac{1}{2} &-\dfrac{1}{2} \\[1em] 0 & \dfrac{\sqrt[]{3} }{2} &-\dfrac{\sqrt[]{3} }{2} \end{bmatrix} \begin{bmatrix} F_A \\[1em] F_B\\[1em] F_C \end{bmatrix} \end{aligned} FαFβ=32102123 2123 FAFBFC

引入一个变量 F 0 F_0 F0,则可以变换转成:
[ F α F β F 0 ] = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 2 1 2 1 2 ] [ F A F B F C ] \begin{aligned} \begin{bmatrix} F_\alpha \\[1em] F_\beta \\[1em] F_0 \end{bmatrix} =\frac{2}{3} \begin{bmatrix} 1 &-\dfrac{1}{2} &-\dfrac{1}{2} \\[1em] 0 & \dfrac{\sqrt[]{3} }{2} &-\dfrac{\sqrt[]{3} }{2} \\[1em] \dfrac{1}{2} & \dfrac{1 }{2} &\dfrac{1}{2} \end{bmatrix} \begin{bmatrix} F_A \\[1em] F_B\\[1em] F_C \end{bmatrix} \end{aligned} FαFβF0=3210212123 212123 21FAFBFC
其逆变换为:
[ F A F B F C ] = [ 1 0 1 − 1 2 3 2 1 − 1 2 − 3 2 1 ] [ F α F β F 0 ] \begin{aligned} \begin{bmatrix} F_A \\[1em] F_B\\[1em] F_C \end{bmatrix} =\begin{bmatrix} 1 &0 &1\\[1em] -\dfrac{1}{2} &\dfrac{\sqrt[]{3} }{2} &1 \\[1em] -\dfrac{1}{2} &-\dfrac{\sqrt[]{3} }{2} & 1 \end{bmatrix} \begin{bmatrix} F_\alpha \\[1em] F_\beta \\[1em] F_0 \end{bmatrix} \end{aligned} FAFBFC=12121023 23 111FαFβF0

去掉多余变量为:
[ F A F B F C ] = [ 1 0 − 1 2 3 2 − 1 2 − 3 2 ] [ F α F β ] \begin{aligned} \begin{bmatrix} F_A \\[1em] F_B\\[1em] F_C \end{bmatrix} =\begin{bmatrix} 1 &0 \\[1em] -\dfrac{1}{2} &\dfrac{\sqrt[]{3} }{2} \\[1em] -\dfrac{1}{2} &-\dfrac{\sqrt[]{3} }{2} \end{bmatrix} \begin{bmatrix} F_\alpha \\[1em] F_\beta \end{bmatrix} \end{aligned} FAFBFC=12121023 23 FαFβ

对于三相Y型不带零线的接法,则 F A + F B + F C = 0 F_A+F_B+F_C=0 FA+FB+FC=0。则可以将 F C F_C FC去掉,得到:
[ F α F β ] = [ 1 0 1 3 2 3 ] [ F A F B ] \begin{bmatrix} F_\alpha\\[1em] F_\beta \end{bmatrix}= \begin{bmatrix} 1&0 \\[1em] \dfrac{1}{\sqrt[]{3} } &\dfrac{2}{\sqrt[]{3} } \\ \end{bmatrix} \begin{bmatrix} F_A\\[1em] F_B \end{bmatrix} FαFβ=13 103 2FAFB
逆变换为:
[ F A F B ] = [ 1 0 − 1 2 3 2 ] [ F α F β ] \begin{bmatrix} F_A\\[1em] F_B \end{bmatrix}= \begin{bmatrix} 1&0 \\[1em] -\dfrac{1}{2 } &\dfrac{\sqrt[]{3} }{2} \\ \end{bmatrix} \begin{bmatrix} F_\alpha\\[1em] F_\beta \end{bmatrix} FAFB=121023 FαFβ

等功率变换

等功率变换六个方程分别为:

2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] \begin{aligned} \sqrt\frac{2}{3} \begin{bmatrix} 1 &-\dfrac{1}{2} &-\dfrac{1}{2} \\[1em] 0 & \dfrac{\sqrt[]{3} }{2} &-\dfrac{\sqrt[]{3} }{2} \end{bmatrix} \end{aligned} 32 102123 2123

2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 2 1 2 1 2 ] \sqrt\frac{2}{3} \begin{bmatrix} 1 &-\dfrac{1}{2} &-\dfrac{1}{2} \\[1em] 0 & \dfrac{\sqrt[]{3} }{2} &-\dfrac{\sqrt[]{3} }{2} \\[1em] \dfrac{1}{\sqrt 2}&\dfrac{1}{\sqrt 2}& \dfrac{1}{\sqrt 2} \end{bmatrix} 32 102 12123 2 12123 2 1

2 3 [ 1 0 1 2 − 1 2 3 2 1 2 − 1 2 − 3 2 1 2 ] \sqrt\frac{2}{3} \begin{bmatrix} 1&0 &\dfrac{1}{\sqrt[]{2} } \\[1em] -\dfrac{1}{2} &\dfrac{\sqrt[]{3} }{2} &\dfrac{1}{\sqrt[]{2}} \\[1em] -\dfrac{1}{2} &-\dfrac{\sqrt[]{3} }{2} & \dfrac{1}{\sqrt[]{2}}\\ \end{bmatrix} 32 12121023 23 2 12 12 1

2 3 [ 1 0 − 1 2 3 2 − 1 2 − 3 2 ] \sqrt\frac{2}{3} \begin{bmatrix} 1&0 \\[1em] -\dfrac{1}{2} &\dfrac{\sqrt[]{3} }{2} \\[1em] -\dfrac{1}{2} &-\dfrac{\sqrt[]{3} }{2} \\ \end{bmatrix} 32 12121023 23

[ 3 2 0 1 2 2 ] \begin{bmatrix} \sqrt[]{\dfrac{3}{2} } &0 \\[1em] \dfrac{1}{\sqrt[]{2} } &{\sqrt[]{2} } \\ \end{bmatrix} 23 2 102

[ 2 3 0 − 1 6 1 2 ] \begin{bmatrix} \sqrt[]{\dfrac{2}{3} } &0 \\[1em] -\dfrac{1}{\sqrt[]{6} } &\dfrac{1} {\sqrt[]{2} } \\ \end{bmatrix} 32 6 102 1

2s/2r变换(park变换)

在这里插入图片描述

如上图所示,当旋转坐标系旋转 θ \theta θ角时,可以得到:

[ F d F q ] = [ c o s θ s i n θ − s i n θ c o s θ ] [ F α F β ] \begin{bmatrix} F_d\\[1em] F_q \end{bmatrix} =\begin{bmatrix} \mathrm{cos} \theta & \mathrm{sin} \theta \\[1em] -\mathrm{sin} \theta & \mathrm{cos} \theta \\ \end{bmatrix} \begin{bmatrix} F_\alpha\\[1em] F_\beta \end{bmatrix} FdFq=cosθsinθsinθcosθFαFβ
其逆变换为:
[ F α F β ] = [ c o s θ − s i n θ s i n θ c o s θ ] [ F d F q ] \begin{bmatrix} F_\alpha\\[1em] F_\beta \end{bmatrix} =\begin{bmatrix} \mathrm{cos} \theta & -\mathrm{sin} \theta \\[1em] \mathrm{sin} \theta & \mathrm{cos} \theta \\ \end{bmatrix} \begin{bmatrix} F_d\\[1em] F_q \end{bmatrix} FαFβ=cosθsinθsinθcosθFdFq

  • 2
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值