永磁同步电机模型第二篇之两相电机实时模型

前言

本文主要介绍两相永磁电机模型的坐标变化极其推导过程。本文主要参考资料:

  • R.Krishnan.永磁无刷电机及其驱动技术.机械工程出版社

推导永磁同步电机动态模型时,基于以下三个假设:

  1. 定子绕组加以对称正弦分布的磁动势
  2. 电感随着转子位置正弦变化
  3. 饱和及参数变化忽略不计

假设两相永磁同步电机如下图所示:
请添加图片描述

电压方程与磁链方程

在永磁同步电机中,定子交轴(b轴)以逆时针方向90°超前直轴(a轴)。定子中a轴和b轴的电压方程可由定子电阻的压降和以及磁链的微分之和求得。

V a = R a i a + d λ a d t V b = R b i b + d λ b d t \begin{aligned} V_a=R_a i_a+\frac{\textup {d} \lambda_a }{\textup {d} t} \\ V_b=R_b i_b+\frac{\textup {d} \lambda_b }{\textup {d} t} \end{aligned} Va=Raia+dtdλaVb=Rbib+dtdλb
其中,
V a V_a Va —— a轴绕组电压
V b V_b Vb —— b轴绕组电压
i a i_a ia —— a轴绕组电流
i b i_b ib —— b轴绕组电流
R a R_a Ra —— a轴绕组电阻
R b R_b Rb —— b轴绕组电阻
λ a \lambda_a λa —— a轴绕组磁链
λ b \lambda_b λb —— b轴绕组磁链

因为电机的绕组是对称的,因而绕组的电阻是相等的,其可以表示为 R = R a = R b R=R_a=R_b R=Ra=Rb
化简后,矩阵表示为
[ V a V b ] = [ R 0 0 R ] [ i a i b ] + d d t [ λ a λ b ] \left[ %左括号 \begin{array}{} %该矩阵一共3列,每一列都居中放置 V_a\\ %第一行元素 V_b\\ %第二行元素 \end{array} \right]= \left[ %左括号 \begin{array}{} %该矩阵一共3列,每一列都居中放置 R&0\\ %第一行元素 0&R\\ %第二行元素 \end{array} \right] \left[ %左括号 \begin{array}{} %该矩阵一共3列,每一列都居中放置 i_a\\ %第一行元素 i_b\\ %第二行元素 \end{array} \right] + \frac{\textup {d}}{\textup {d} t} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \lambda_a\\ %第一行元素 \lambda_b\\ %第二行元素 \end{bmatrix} [VaVb]=[R00R][iaib]+dtd[λaλb]

磁链方程为:
λ a = L a i a + L a b i b + λ f cos θ λ b = L b i b + L b a i b + λ f sin θ \begin{aligned} \lambda_a=L_{a}i_a+L_{ab}i_b+\lambda_f \textup {cos} \theta \\ \lambda_b=L_{b}i_b+L_{ba}i_b+\lambda_f \textup {sin} \theta \\ \end{aligned} λa=Laia+Labib+λfcosθλb=Lbib+Lbaib+λfsinθ

矩阵表示形式为:
[ λ a λ b ] = [ L a L a b L b a L b ] [ i a i b ] + λ f [ cos θ sin θ ] \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \lambda_a\\ %第一行元素 \lambda_b\\ %第二行元素 \end{bmatrix}= \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 L_{a}&L_{ab}\\ %第一行元素 L_{ba}&L_{b}\\ %第二行元素 \end{bmatrix} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 i_a\\ %第一行元素 i_b\\ %第二行元素 \end{bmatrix}+ \lambda_f \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \textup {cos} \theta\\ %第一行元素 \textup {sin} \theta\\ %第二行元素 \end{bmatrix} [λaλb]=[LaLbaLabLb][iaib]+λf[cosθsinθ]

其中,
L a L_{a} La——a轴自感
L b L_{b} Lb——b轴自感
L a b L_{ab} Lab——b轴对a轴的互感
L b a L_{ba} Lba——a轴对b轴的互感
λ f \lambda _f λf——永磁体(转子)产生的磁链
θ \theta θ ——永磁体(转子)旋转的电角度

由于a轴与b轴是对称关系,所以, L a b = L a b = L m L_{ab}=L_{ab}=L_m Lab=Lab=Lm

做如下定义:
θ = 0 ∘ \theta=0^{\circ} θ=0时, L a = L d L_{a}=L_d La=Ld,此时 L a L_{a} La最小。当 θ = 9 0 ∘ \theta=90^{\circ} θ=90时, L a = L q L_{a}=L_q La=Lq,此时 L a L_{a} La最大。

可以得到如下公式:
L a = L 1 − L 2 cos 2 θ L b = L 1 + L 2 cos 2 θ L m = − L 2 sin 2 θ L_a=L_1-L_2\textup {cos} 2\theta\\ L_b=L_1+L_2\textup {cos} 2\theta\\ L_m=-L_2\textup {sin} 2\theta La=L1L2cos2θLb=L1+L2cos2θLm=L2sin2θ
其中
L 1 = L q + L d 2 L 2 = L q − L d 2 \begin{aligned} L_1=\frac{L_q+L_d}{2}\\ L_2=\frac{L_q-L_d}{2} \end{aligned} L1=2Lq+LdL2=2LqLd

L d = L 1 − L 2 L q = L 1 + L 2 L_d=L_1-L_2\\ L_q=L_1+L_2\\ Ld=L1L2Lq=L1+L2

注意:
表贴式永磁同步电机 L a L_a La L b L_b Lb变化量很小,为5%到15%,在建模中,认为其不存在凸极性,取
L d = L q = L 1 L 2 = 0 L_{d}=L_{q}=L_1\\ L_2=0 Ld=Lq=L1L2=0

结论

不失一般性,两项电机实时模型的电压方程为:
[ V a V b ] = [ R 0 0 R ] [ i a i b ] + d d t [ λ a λ b ] \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 V_a\\ %第一行元素 V_b\\ %第二行元素 \end{bmatrix}= \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 R&0\\ %第一行元素 0&R\\ %第二行元素 \end{bmatrix} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 i_a\\ %第一行元素 i_b\\ %第二行元素 \end{bmatrix}+ \frac{\textup {d}}{\textup {d} t} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \lambda_a\\ %第一行元素 \lambda_b\\ %第二行元素 \end{bmatrix} [VaVb]=[R00R][iaib]+dtd[λaλb]

磁链方程为:
[ λ a λ b ] = [ L a L m L m L b ] [ i a i b ] + λ f [ cos θ sin θ ] = [ L 1 − L 2 cos 2 θ − L 2 sin 2 θ − L 2 sin 2 θ L 1 + L 2 cos 2 θ ] [ i a i b ] + λ f [ cos θ sin θ ] \begin{aligned} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \lambda_a\\ %第一行元素 \lambda_b\\ %第二行元素 \end{bmatrix}&= \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 L_{a}&L_{m}\\ %第一行元素 L_{m}&L_{b}\\ %第二行元素 \end{bmatrix} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 i_a\\ %第一行元素 i_b\\ %第二行元素 \end{bmatrix}+ \lambda_f \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \textup {cos} \theta\\ %第一行元素 \textup {sin} \theta\\ %第二行元素 \end{bmatrix}\\& = \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 L_1-L_2\textup {cos} 2\theta&-L_2\textup {sin} 2\theta\\ %第一行元素 -L_2\textup {sin} 2\theta& L_1+L_2\textup {cos} 2\theta\\ %第二行元素 \end{bmatrix} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 i_a\\ %第一行元素 i_b\\ %第二行元素 \end{bmatrix}+ \lambda_f \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \textup {cos} \theta\\ %第一行元素 \textup {sin} \theta\\ %第二行元素 \end{bmatrix} \end{aligned} [λaλb]=[LaLmLmLb][iaib]+λf[cosθsinθ]=[L1L2cos2θL2sin2θL2sin2θL1+L2cos2θ][iaib]+λf[cosθsinθ]

若是表贴式永磁同步电机,磁链方程则可以简化为:
[ λ a λ b ] = [ L a 0 0 L b ] [ i a i b ] + λ f [ cos θ sin θ ] = [ L 1 0 0 L 1 ] [ i a i b ] + λ f [ cos θ sin θ ] \begin{aligned} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \lambda_a\\ %第一行元素 \lambda_b\\ %第二行元素 \end{bmatrix}&= \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 L_{a}&0\\ %第一行元素 0&L_{b}\\ %第二行元素 \end{bmatrix} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 i_a\\ %第一行元素 i_b\\ %第二行元素 \end{bmatrix}+ \lambda_f \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \textup {cos} \theta\\ %第一行元素 \textup {sin} \theta\\ %第二行元素 \end{bmatrix}\\& = \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 L_1&0\\ %第一行元素 0& L_1\\ %第二行元素 \end{bmatrix} \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 i_a\\ %第一行元素 i_b\\ %第二行元素 \end{bmatrix}+ \lambda_f \begin{bmatrix} %该矩阵一共3列,每一列都居中放置 \textup {cos} \theta\\ %第一行元素 \textup {sin} \theta\\ %第二行元素 \end{bmatrix} \end{aligned} [λaλb]=[La00Lb][iaib]+λf[cosθsinθ]=[L100L1][iaib]+λf[cosθsinθ]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值