
如上图所示,电影院的观影厅中有 n
行座位,行编号从 1 到 n
,且每一行内总共有 10 个座位,列编号从 1 到 10 。
给你数组 reservedSeats
,包含所有已经被预约了的座位。比如说,researvedSeats[i]=[3,8]
,它表示第 3 行第 8 个座位被预约了。
请你返回 最多能安排多少个 4 人家庭 。4 人家庭要占据 同一行内连续 的 4 个座位。隔着过道的座位(比方说 [3,3] 和 [3,4])不是连续的座位,但是如果你可以将 4 人家庭拆成过道两边各坐 2 人,这样子是允许的。
示例 1:

输入:n = 3, reservedSeats = [[1,2],[1,3],[1,8],[2,6],[3,1],[3,10]]
输出:4
解释:上图所示是最优的安排方案,总共可以安排 4 个家庭。蓝色的叉表示被预约的座位,橙色的连续座位表示一个 4 人家庭。
示例 2:
输入:n = 2, reservedSeats = [[2,1],[1,8],[2,6]]
输出:2
示例 3:
输入:n = 4, reservedSeats = [[4,3],[1,4],[4,6],[1,7]]
输出:4
提示:
1 <= n <= 10^9
1 <= reservedSeats.length <= min(10*n, 10^4)
reservedSeats[i].length == 2
1 <= reservedSeats[i][0] <= n
1 <= reservedSeats[i][1] <= 10
- 所有
reservedSeats[i]
都是互不相同的。
解题思路
主要存在三种合法区间,分别是[2,5]
、[6,9]
和[4,7]
。比较暴力的做法就是将三个区间中的所有元素存储为set
,然后遍历reservedSeats
将所有同一排的放到同一个set
中,最后判断这些set
和前面的区间元素是不是有交集。
注意这里有一个边界问题,当有一些行并没有预约座位的时候,我们可以安排两个家庭。也就是当n
大于reservedSeats
安排的set
个数的时候,要将这些遗漏的部分算上。
class Solution:
def maxNumberOfFamilies(self, n: int, reservedSeats: List