12二维随机整数数组
np.random.randint(1,10,size=(3,4))
20矩阵元素间乘法
21矩阵乘法,numpy除非用dot,不然要转换成matric再*
23转置
24求逆,线性代数 linalg
25,27
35,36:
reshape() 不改变原数组
resize() 改变原数组
42,43,44,45最值,最值索引
47,48
算术平均,加权平均
54
Z[::2,1::2] = 1
55
对元素操作:满足什么条件,则
Z[(1 < Z) & (Z <= 9)] *= -1
57打印时间
yesterday = np.datetime64(‘today’,‘D’) + np.timedelta64(-1,‘D’)
58 取整
z = np.random.uniform(0,10,10)
print(‘原始值:’,z)
print(‘方法1:’,z-z%1)
print(‘方法2:’,np.floor(z))
print(‘方法3:’,np.ceil(z)-1)#i>[x],因此当x恰好无小数部分时会有bug,但是可能这种可能性在np.random.uniform()处可能性很低
print(‘方法4:’,z.astype(int))
print(‘方法5:’,np.trunc(z))
np.floor()
60 创建长度5,等间隔,0~1,不包括0和1,一维数组
Z = np.linspace(0,1,6,endpoint=False)[1:]
64
for dtype in [np.int8,np.int32,np.int64]:
print(“the minimum value of {}”.format(dtype),np.iinfo(dtype).min)
print(“the minimum value of {}”.format(dtype),np.iinfo(dtype).max)
for k in [np.float32,np.float64]:
print(“the minimum value of {}”.format(k),np.finfo(k).min)
66二维数组按第3列上下升序排列
Z = np.random.randint(0,10,(5,5))
print(“排序前:\n”,Z)
Z[Z[:,2].argsort()]
71 55数组,随机放p个1
p = 3
Z = np.zeros((5,5))
t = np.random.choice(range(55), p, replace=False)
np.put(Z, t,1)
t,Z
qqwertyqwewerwerqqqqwerrerewrerwttyyyyuiouiopo0pppasdfgfgfgfghjhjhjhjkllkjkll;’;’;’[]zxczxcvbzxcvbnmnmnmnmnmnmnmnm,.
72
import numpy as np
X = np.arange(9).reshape(3,3)
print(X)
t = X.mean(axis=1, keepdims=True)
print(t)
Y = X - t
Y
Python numpy 中 keepdims 的含义
keepdims主要用于保持矩阵的二维特性
73获取二维数组点积结果对角线数组
A = np.random.uniform(0,2,(3,3))
B = np.random.uniform(0,1,(3,3))
print(np.dot(A,B))
print(np.diag(np.dot(A,B)))
较快的方法
np.sum(A * B.T, axis=1)
更快的方法
np.einsum(“ij, ji->i”, A, B)
74数组(一维)前p个最大值
z = np.random.randint(1,100,(10,10))
print(z)
p = 5
#z.ravel(),z
t = z.ravel()
t
t[np.argsort(t)[-p:]]
76保留两位小数
Z = np.random.random((5,5))
print(Z)
np.set_printoptions(precision=2)
Z
79缺失总数及位置
Z[np.random.randint(10,size = 3),np.random.randint(10,size = 3)]=np.nan
print(Z)
print(np.isnan(Z))
print(np.isnan(Z).sum())
print(np.where(np.isnan(Z)))
80删除缺失值所在行
沿用 79 题中的含缺失值的 2 维数组
np.sum(np.isnan(Z), axis=1)
Z[np.sum(np.isnan(Z), axis=1)==0]
#Z[np.sum(np.isnan(Z), axis=1) == 0]
82数组各元素分类转换成文本值
指定类别如下 # 1 → 汽车 # 2 → 公交车 # 3 → 火车
Z = np.random.randint(1,4,10)
print(Z)
label_map = {1: “汽车”, 2: “公交车”, 3: “火车”}
[label_map[x] for x in Z]
83
np.concatenate((Z1,Z2,Z3))#两个括号,很多地方都是
84
a = np.random.randint(100, size=10)
print('Array: ', a)
a.argsort(),a[a.argsort()]#前面a.argsort()是索引
85二位u数组行最大值
np.amax(Z, axis=1)
86二位u数组行最小值
np.apply_along_axis(np.min, arr=Z, axis=1)
87欧式距离
数学计算方法
print(np.sqrt(np.power((8-2), 2) + np.power((7-1), 2)))
NumPy 计算
np.linalg.norm(b-a)
89逆矩阵
inverse_matrix = np.linalg.inv(matrix)
python 数据标准化常用方法,z-score\min-max标准化
90 Z-score标准化公式
91 min-max表转化
92 L2范数
93相关性系数
Z = np.array([ [1, 2, 1, 9, 10, 3, 2, 6, 7], # 特征 A [2, 1, 8, 3, 7, 5, 10, 7, 2], # 特征 B [2, 1, 1, 8, 9, 4, 3, 5, 7]]) # 特征 C np.corrcoef(Z)
100从网页读取图像,转换为数组