凸优化-真锥和分割超平面

26 May 2015

在引入分割超平面和支持超平面的概念之前,首先简要介绍一下集合中的泛化不等式和最值为题。

1. 真锥

首先我们定义一个概念——真锥(proper cone),一个凸锥 是真锥,如果满足:K是凸集;K是闭合的;K是实心的(内部非空,如射线不是真锥);K是点集(不包含直线,也就是说如果 都属于该凸锥,那么 )。 在真锥上我们可以定义泛化不等式(generalized inequalities)中点大小的关系(partial ordering): 。该式表示在集合K下,点x恒小于y,即点x的各个分量 。当 ,在高维空间上的泛化不等式与一维上数字间的大小比较的定义相同。泛化不等式具有以下性质:

  1. 可加性:如果 ,同时, ,则
  2. 传递性:如果 ,同时, ,则
  3. 自反性:如果 ,同时, ,则
  4. 反对称性:
  5. 极限保持性:如果 ,同时, ,则 ,当

2. 最值和极值

由于高维空间与一维空间不同,我们无法将一维空间的线性顺序(linear ordering)延伸到高维空间用于比较点的大小。所以,高维空间中的最值和极值的定义相对低维空间就变的复杂一些。我们定义集合 的最小值(minimum element)为对于所有点 ,如果集合存在最值,那么有且仅有一个点存在(unique)。我们定义集合 的极小值(minimal element)为对于点 ,仅当 时,才会满足

对于集合而言,我们可以利用集合的定义说明集合最值的问题,集合 中的元素 为最小值,当且仅当 ,这里 表示所有点的都大于等于x,即 ;极小值则为 。例如,对于二维空间 ,如果点x为最小值点,则最小值意味着空间内所有的点都位于点x的右上方,极小值则表示没有其他的点位于点x的左下方。

如下图,点 为集合 的最小值,因为对于 (浅色阴影部分)而言, ,集合 内的其他点则不满足该条件;对于点 ,其为集合 的极小值,因为满足 ,其中浅色阴影部分代表 部分,很明显,极小值并不是唯一的,因为点 所在的直线上均为集合的极小值。

3. 分割超平面(分离超平面)

在上一讲中我们提到了仿射函数的概念,仿射函数可以简单理解为对于空间集合的线性变换,这里所讲的超平面分割理论(separating hyperplane theorem)是指:如果存在两个并查集合 (disjoint set, ),且这两个集合都为凸集,则必然存在一个超平面(之前讲过超平面既是凸集又是仿射集)使得对于集合 中所有点x满足 ,集合 中所有点x满足 ,换言之,仿射函数 在集合C上非正,在集合D上非负。超平面 称为集合C和D的分割超平面,如下图。

接下来证明超平面分割理论,假设集合C和D间的欧几里德距离(Euclidean distance)为 其中,点 是两个集合中距离最近的点的组合。那么,我们将会证明分割超平面位于线段 的正中间(the separating hyperplane is orthogonal to, and bisects, the line segment between   and  )。

因为点 是距离最近的点, ,我们定义 ,所以仿射函数可以变换成:

从上式可以看出,如果超平面分割理论成立的话,仿射函数在C上非正,在D上非负。如果平面分割理论不成立的话,必然会在集合D上存在一点 使得 。则 可写为:

很明显, 。同时,我们可以构造出微分函数 ,当t=0时,

该式意味着函数 处一阶导数为负数,函数在 处呈递减趋势。所以,当 时(在0点右侧), 。即, 。该式表明,必然存在一点 使得该点到点c的距离小于点d到点c的距离,这与最开始的点c和点d是最近的亮点的假设相违背,所以证明出超平面分割理论的正确性,即两个不相交凸集间必然存在一个分割平面能将两个集合分开。

那么,超平面分割定理的逆定理是否正确呢?是否可以证明两个凸集如果存在超平面能将集合分开,那么这两个集合必然是不相交的集合呢?答案是否定的,因为如果集合 ,则存在超平面 将两个集合分开。但是,如果集合 之间至少有一个是开集的话,那么该定理成立,因为,如果存在该超平面且 为开集,则超平面对应的仿射函数必然在集合 上为负,在D上为非负。

平面分割定理的逆定理(converse separating hyperplane theorems):对于任意两个凸集 ,其中至少一个集合为开集,则当且仅当集合 间存在一个分割超平面时,集合 是不相交(disjoint)的。

4. 支持超平面

支持超平面(supporting hyperplane)是指,对于凸集 而言, 为集合 边界上的一点( ),如果 ,那么超平面 被称为集合 在点 处的超平面。支持超平面也可以理解为分割点 的超平面,支持超平面的几何意义表示集合 上点 的切线。支持超平面的实例如下图所示。

基于超平面分割理论我们可以得出支持超平面理论(supporting hyperplane theorem):对于任意非空凸集 和任意集合 上的一点 ,必然在点 上存在一个支持超平面。同理,我们可以获得支持超平面理论的逆定理,如果集合是闭合的且含有非空内点,当在集合边界的每一点上都存在支持超平面时,该集合为凸集。

5. 总结

在获得多维空间上极值的定义,以及分割超平面和支持超平面定理,我们可以更加明确什么是支持向量,什么是分类边界,以及为什么支持向量机算法会完成分类的任务,当然,谈到支持向量机,其中还用到了对偶的思想,关于对偶锥(dual cone)比较抽象,我个人理解的不是很好,所以暂时先不写这部分的内容,感兴趣的童鞋自行阅读《convex optimization》一书的2.6节内容。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值