凸优化 第二章 凸集

在此记录一些需要理解的概念

超平面的表达

在这里插入图片描述
超平面可以看成是 a T ( x − x 0 ) = 0 a T x = a T x 0 = b      [ 将 a T x 0 记 为 b ] a^T(x-x_0)=0\\a^Tx=a^Tx_0 =b \ \ \ \ [将a^Tx_0记为b] aT(xx0)=0aTx=aTx0=b    [aTx0b]
相应的,超平面也就分出了两个半空间
a T x ≥ b = a T x 0 a T ( x − x 0 ) ≥ 0 a^Tx\ge b=a^Tx_0\\ a^T(x-x_0)\ge0 aTxb=aTx0aT(xx0)0
我们知道当两个向量夹角小于九十度的时候内积大于等于0,所以大于等于的半空间就是在法向量a一侧的半空间
在这里插入图片描述

向量不等式

对于多个不等式的合成写法,向量不等式(所以这类序并不像定义在R上的序,要么是大于要么是小于,可能整个向量不等式里一部分大于一部分小于,不一定能比较)
在这里插入图片描述

半正定锥,正定锥

在这里插入图片描述

广义不等式

在这里插入图片描述
回顾锥的定义
在这里插入图片描述

凸和闭都好理解,实的是什么意思?

  • 非空内部 ,因为锥可以是一条射线,内部为空
  • 尖的,因为锥可以是一个双向的锥(领结型),两个关于某点对称的锥,这就排除了这一种情况

广义不等式是 R n R^n Rn上的半序关系,用proper cone K ∈ R n K\in R^n KRn来定义
在这里插入图片描述

对偶锥和广义不等式

对偶锥一定是凸的,也就是说可以看作是原锥的一个凸近似。
在这里插入图片描述

在这里插入图片描述
在广义不等式下定义极小元minimal和最小元minimum,需要注意最小元是所有元素都可比较(半序关系不一定非黑即白),他是最小的,极小元是在可以比较的点里比它小的和S的交集只有他一个。
在这里插入图片描述
在这里插入图片描述
目前对对偶锥和对偶广义不等式的理解是这样的。

  • 广义不等式是定义在正常锥下的一种关系
  • 用对偶锥定义的对偶广义不等式和原广义不等式之间可以相互转换
  • 可以用对偶广义不等式描述原广义不等式下的关系
  • 原广义不等式下的关系可能不太好判断?用对偶广义不等式表达可能更好判断?
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值