怎么写大模型的提示词(prompts):任何人都需要掌握的查询技能

在大模型时代,人与智能设备的交互变得更加广泛和深入,覆盖了生活常识、查询资料、解决专业问题、心理咨询和专业辅导等众多领域。大型模型如GPT能够满足广泛的需求,但要想充分利用这些模型的能力,掌握写好提示词的技巧是关键。能够有效地编写提示词的人能够更好地从大型模型中获取所需的知识和信息,从而实现其潜力的最大化发挥。—— AI Dreams, APlayBoy Teams!

         在这个AI技术飞速发展的新时代,提示词工程成为了连接人类与智能设备的关键桥梁。本文详细介绍了提示词工程的概念、重要性以及在提升人工智能模型交互中的核心作用。通过分析GPT的提示词生成方法、探索ICIO和CRISPE等主要框架,以及讨论OpenAI的官方策略,本文旨在为读者提供一个全面的了解和应用提示词工程的指南。同时,文章还指出了提示词工程的局限性,并提供了资源汇总,助力读者在新时代中不落后,更有效地利用AI技术。

引言

         提示词工程是一种技术,旨在优化和提升人工智能模型(如GPT)的交互和响应质量。这种工程的核心在于精心设计和结构化提示词,以确保模型能够准确理解用户的意图和需求。通过这种方法,用户可以更有效地利用AI模型的能力,从而获得更准确、更相关的信息和解决方案。提示词工程的重要性在于,它帮助桥接用户和AI之间的沟通差距,使得AI交互更加直观和高效。

         每个人都有自己的特点、特长和知识的不足之处。为了获得更适合自己的答案,需要精心设计提示词来引导人工智能模型。这种优化方式有助于缩小用户意图与模型理解之间的差距,确保AI提供的回应更贴近用户的实际需求。通过提示工程,可以更精确地传达用户意图,使AI模型提供更相关、更准确的信息,从而提高对话系统的整体效能和用户满意度。

1 GPT生成提示词

         在这里,我分享我常用的两种使用GPT生成提示词的方式。

  • 第一种:先让GPT自行构建一套原则,接着依据这些原则来生成提示词。这一过程从定义和创建原则开始,然后根据这些原则精心制定出具体的提示词。

  • 第二种方法则更为直接:我会明确阐述我的具体需求,并让GPT基于这些需求来形成相应的提示词。

         为了更清晰地说明这两种方法的应用,我将分别给出示例,并同时展示了由GPT生成的相关教程。

1.1 两种生成方法

         这里说下我习惯使用的两个方式分别是1.先让gpt自己生成原则,然后根据原则生成提示词,2.直接指明你的需求,然后让GPT根据你的需求生成提示词,下面我对两种方式分别举例, 示例如下:

         

先让gpt自己生成原则,然后根据原则生成提示词

    根据问题直接让GPT生成提示词

1.2 GPT生成教程

提问:

以“怎么能快速提高java程序员的薪资”举例,根据上面的原则生成一份“怎么写出完美提示词”的教程。

GPT回复:

  要创建一份“怎么写出完美提示词”的教程,以“怎么能快速提高Java程序员的薪资”为例,可以遵循以下步骤:
写作完美提示词的教程:以“怎么快速提高Java程序员的薪资”为例:
明确目标:首先确定你的具体目标。本例中的目标是了解如何快速提高作为Java程序员的薪资。
提供细节:包含你需要的关键细节。例如,你可能想知道特定的技能提升、行业认证、或者职业发展策略。
避免歧义:使用清晰、直接的语言,减少歧义。明确你需要的是实用建议而非通用信息。
合适的长度:保持简洁但确保包含所有关键信息。
  示例提示词:
  “我是一名Java程序员,想要了解怎样可以在短时间内显著提高我的薪资。请提供具体的策略和建议,包括哪些高需求的Java技能可以学习,是否有推荐的行业认证,以及如何在职场中展示我的技能以获得更高的薪酬。我对于职业发展和薪资谈判也感兴趣。”
  使用教程的步骤:
理解需求:在编写提示词前,明确你想从GPT获取的具体信息或建议。
组织结构:使用清晰的结构来组织你的问题,使其逻辑性强且容易理解。
审视和调整:完成后,检查你的提示词,确保它既具体又明确。必要时进行调整。
实践和反馈:使用提示词与GPT交互,并根据得到的回答调整你的提示词以获得更准确的信息。
  结论:
  通过遵循这个教程,你可以有效地编写出能够清晰传达你需求的GPT提示词,无论是求职建议、技能提升还是薪酬提升。记住,有效的沟通是关键,不断的实践和调整会让你更加熟练地使用GPT。

2 两个常用框架

ICIO Prompt 框架

        框架概述: 这个框架是由Elavis Saravia总结的,他认为一个有效的prompt应该包含以下四个部分:

Elvis Saravia在机器学习和自然语言处理领域内的工作十分出色。他对于教育和研究材料的贡献,特别是在机器学习和人工智能技术方面,显得尤为重要。Saravia不仅分享了大量的机器学习课程笔记,还提供了学习机器学习所需数学知识的资源,对于AI社区的教育和研究贡献突出,对推动该领域的发展产生了显著影响。

  1. Instruction(必须):指令:即您希望模型执行的具体任务。

  2. Context(选填):背景信息:或称为上下文信息,这有助于引导模型做出更精准的反应。

  3. Input D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值