指标加权评价方法

层次分析法(Analytic Hierarchy Process, AHP)

https://www.cnblogs.com/BlueMountain-HaggenDazs/p/4278049.html

熵权法

原理

思想:熵权法是根据变量(指标)中信息的多少对变量(指标)加权的方法。对变量包含信息多少的度量,采用的是信息熵 e j e_j ej, 当数据按均匀分布分散时熵值最大(此时该变量的价值很小),当数据集中在一个值上时熵值为0(此时该变量价值高),因此,我们利用 1 − e j 1-e_j 1ej对各变量加权。
在这里插入图片描述

在这里插入图片描述

计算方法

1. 构建原始数据矩阵

设有 m个评价对象,n个评价指标,构建原始数据矩阵:
在这里插入图片描述
xij 表示第 i个评价对象在第 j个指标上的取值。

2.数据标准化

由于各指标可能具有不同的量纲,需要对数据进行标准化处理,使其无量纲化,便于比较。正向指标(值越大越好):
在这里插入图片描述
负向指标(值越小越好):
在这里插入图片描述
中间型指标(有最优值 xj∗):
在这里插入图片描述
3. 计算各指标的比重

根据标准化后的数据,计算第 i个评价对象在第 j个指标上的比重:
在这里插入图片描述

4. 计算信息熵

根据各评价对象的比重 pij 计算第 j个指标的信息熵:
在这里插入图片描述
5. 计算权重

根据信息熵 ej计算第 j个指标的权重:
在这里插入图片描述
6. 综合评价

利用计算得到的权重 wj, 对每个评价对象的综合得分进行加权计算:
在这里插入图片描述
其中:
Si 表示第 i 个评价对象的综合得分;综合得分越高,表示评价对象的表现越好。

Technique for Order Preference by Similarity to Ideal Solution(TOPSIS, 优劣解距离法)

原理

TOPSIS法是一种常用的综合评价方法,能够充分利用原始数据的信息,精确地反映各评价方案之间的差距。之前在层次分析法中,我们发现评价的决策层不能够太多,否则判断矩阵和一致矩阵差距可能会很大。同时,如果决策层中指标的数据是已知的,那么层次分析法也很难利用这些初始数据,来使评价更加准确。TOPSIS法特别适合具有多组评价对象时,要求通过检测评价对象与最优解和最劣解的距离来进行排序。

计算方法

1. 构建原始数据矩阵

设有 m个评价对象,n个评价指标,构建原始数据矩阵:
在这里插入图片描述
xij 表示第 i个评价对象在第 j个指标上的取值。

2.数据正值化
采用合适的方法处理X,使其分量都大于0.
极大型(效益型)指标、极小型(成本型)指标、中间型指标、区间型指标。

3. 标准化
对正向化矩阵X, 采用下面的方法得到标准化的Z矩阵。
在这里插入图片描述

4.计算熵权w(也可以用层次分析法得到权重w)

5.计算加权最大值的距离与最小值的距离

在这里插入图片描述
其中, Z j + Z_j^+ Zj+表示第j个指标中的最大值, Z j − Z_j^- Zj表示第j个指标中的最小值。

6.计算各样本与最优方案的贴近程度并排序
C i = D i − D i + + D i − C_i=\frac{D_i^- }{D_i^++D_i^-} Ci=Di++DiDi
其中, C i C_i Ci的取值范围是【0,1】,并且越接近1表明样本评分越好。 然后,根据 C i C_i Ci的值就可以排序了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值