transfer learning+EEG(一)

问题所在——the applications of BCls are seriously hindered by the time consuming calibrations repeated before each use.
EEG要进行校准(??)
原因1:脑电维度高又有噪声(边缘分布和条件分布在小样本情况下计算不出) 机器学习还是要看的!
原因2:受试者在实验过程中的脑电信号不稳定(疲劳注意力集中等)
几种迁移学习的方法:
feature-representation-transfer:the knowledge transferred across domains is encoded into a new feature representation
instance-transfer:A important assumption in this case is that certain parts of data in the source domains can be reused to aid the target task. Accordingly, the approaches in this case often require that source and target domains have similar distributions of data.
classifer-transfer:domain adaption of classifer+ ensemble learing of classifers
Domain adaption of classifer is a promising method, which
is developed to overcome the changes in data fom one domain to another.
Ensemble learing of classifers combines multiple classifers
from multiple domains to obtain a fnal predictor.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值