lingo解线性的缺陷

lingo在解决线性问题时仅能处理单一目标约束的最优解,而无法应对多目标场景。相比之下,matlab能够轻松处理多目标优化问题。文章通过举例说明了lingo的不足,并提供了使用matlab的linprog函数解决此类问题的示例,展示了在调整目标风险系数a时,如何找到最佳收益风险平衡点。
摘要由CSDN通过智能技术生成

缺陷:

引用块内容
lingo虽然可以解线性问题,但是他只能在约束条件下解针对这一目标的最优解,不能一次性解在不同约束条件的特定目标的最优解,但是matlab就可以做到,

例子:

要使净收益尽可能大,总体风险尽可能小,这是一个多目标规划模型:
这里写图片描述
说明:ri为收益率,pi是交易率,M是总资金,xi是给第i个投资的资金,在本题看做1;
由于此题为多规划模型,要做一定的处理才能用软件求解。
方法1:可把取一个目标做最优化,得到的结果作为条件,在对第二个做最优化。
方法二:可先对这个目标做一个权值的分配,把它们作为一个目标进行处理。

模型一:

通过固定目标风险用a,得到最大收益:
这里写代码片
但a的不同,约束条件也就不同,最优值也就不同,所以lingo就显得很无力,此时用matlab中的linprog函数就可完成。

function xianxinguihua
a=0;
while a<0.05 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值