Lingo:软件简介与优化问题【数学建模工具】

本文详细介绍了Lindo软件的六大主菜单功能,包括文件、编辑、求解、报告、窗口和帮助,以及各菜单下的特色命令。涵盖模型创建、编辑、求解、报告生成及在线帮助访问等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lingo主菜单命令

LINDO 软件的菜单条上有 6 个主菜单:

  • File(文件)
  • Edit(编辑)
  • Solve(求解)
  • Reports(报告)
  • Window(窗口)
  • Help(帮助)

File(文件)菜单包括了 LINDO 通过文件与外部设备(如磁盘)交换信息的命令;
Edit(编辑)菜单包括了在当前窗口下编辑文本的命令;Solve(求解)菜单包括了求解模型的命令;
Reports(报告)菜单包括了生成解答结果报告的命令;Window(窗口)菜单包括了窗口切换的命令;
Help(帮助)菜单包括了访问在线帮助文档的命令。
对于几乎所有的菜单命令,LINDO 都提供了快捷键(快捷键的提示位于每个菜单命令的右侧);对于常用的菜单命令,LINDO 在工具栏提供了相应的图形按钮。工具栏是浮动式的,可以用鼠标拖到屏幕上任何地方。这些用法都是和 WINDOWS 下其它应用程序的标准用法类似的,所以我们不准备对所有的菜单命令进行完整和详细的介绍,而是只对前4 个主菜单中有一定 LINDO 特色的主要命令进行简要介绍。
image.png

文件主菜单

  • File|New、File|Open、File|View 的区别
    File|New 用于新建一个模型文件;File|Open 用于打开一个已有文件,此后可以对这个文件进行编辑、求解、保存等;而 File|View 只用于打开已有文件供浏览(也可以求解)使用,不能编辑。由于 LINDO 编辑器对文件的大小是有限制的,因此用 File|New 和 File|Open打开的文件不能太大(通常不一定是由 LINDO 本身的编辑器产生的)是有用的。

  • File|Log Output
    该命令将打开一个对话框,要求你指定一个文件名(该文件成为“Log(日志)文件”)。此后,LINDO 软件的所有输出都被送到这个日志文件中保存下来,供你以后查看。
    注意,正常情况下,在菜单驱动模式下,LINDO 的输出应当是被送到报告窗口;在“CommandWindow(命令窗口)”模式下,LINDO 的输出应当是被送到命令窗口。在的对话框中有两个检验盒:
    (1)如果选择“Echo to screen(屏幕显示)”检验盒,屏幕上也会同时显示输出结果,否则屏幕上就不再显示了;
    (2)如果选择“Append output(追加输出)”检验盒,则以后所有 LINDO 的输出被追加到这个日志文件的结尾,否则系统将首先清空这个文件,然后开始追加内容。

  • File|Take Commands
    File|Take Commands(提取命令)用于打开和执行一个LINDO 命令脚本文件(命令脚本文件中包含一系列 LINDO 命令组成的命令序列。

  • File|Basis Read 和 File|Basis Save
    File|Basis Save(保存基)命令打开一个标准的文件保存对话框,可以将单纯形算法的当前的基(解)以你指定的文件名和文件格式保存下来;将来可以用 File|Basis Read(读取基)命令读出这个基(解),并可以从这个基(解)开始继续运行单纯形算法。保存时可以有三种文件格式可供选择:*.pun(以 MPS(数学规划系统)的“punch”格式保存); *.fbs(以 LINDO 格式保存); *.sdbc(以数据库格式按列(变量)保存)。

  • File|Title
    显示当前模型的名称(如果该模型被命名过,即模型的程序中出现过 Title 语句)。

  • File|Date
    显示当前日期和时间。

  • File|Elapsed Time
    显示本次启动 LINDO 以来已经运行了多长时间。

  • File|Licence
    输入、验证 LINDO 的许可证密码.

编辑主菜单

  • Edit|Options
    该命令打开一个对话框(见图 2-29),用于设置 LINDO 系统运行的内部参数,这对于比较专业的用户是有帮助的。从图中可以看出,可修改的参数分成两大类:左边一类是关于优化程序的(Optimizer 这里是指优化程序,也就是 LINDO 求解器,而不是最优解的意思),右边一类是关于输出格式的(Output)。

  • Edit|Paste Symbol
    该命令打开一个对话框,用于在模型中当前光标处插入符号。

  • Edit|Choose New Font
    该命令用于指定显示的字体、字行和文字的大小。

求解主菜单

  • Solve|Compile Model
    Solve|Compile Model(编译模型)命令对当前模型进行编译(使用 Solve|Solve 命令时自然也要先使用该命令)。如果当前模型有输入语法错误,编译时将报告错误。
  • Solve|Pivot
    Solve|Pivo(旋转)命令从当前解出发进行一次单纯形旋转(即一次迭代)。用这个命令可以跟踪整个单纯形法的运行。
  • Solve|Debug
    Solve|Debu(调试)命令分析 LP 无解或无界的原因建议如何修改。它仅对 LP 有效,对 IP 或 QP 无意意。对线性规划的高手而言,这个功能可能是有用的。
  • Solve|Premptive Goal
    Solve|Premptive Goal(多目标)命令依次按照多个目标求解模型。

报告主菜单

  • Report|Solution
    Report|Solution(解答)命令显示当前的解(你必须在此之前求解过当前模型)。
  • Report|Range
    Report|Range(敏感性分析)命令显示当前解的敏感性分析结果(你必须在此之前求解过当前模型)。
  • Report|Parametrics
    Report|Parametrics(参数分析)命令对约束的右端项(RHS)进行参数分析,也就是研究某个约束的右端相发生变化时,最优值如何变化。
  • Report︱Statistics
    Report︱Statistics(统计)命令显示当前模型的统计信息.
  • Report︱Peruse
    Report︱Peruse(用户请求)命令按照你的要求显示大拿跟前解答的各种信息.
  • Report Format(报告参数):设置用户希望的显示格式.
    该命令的具体用法这里不详细介绍了,大家试试就清楚了.
  • Report︱Picture 和 Report︱Basis Picture
    Report︱Picture按照图形或文本方式显示模型中的非零系数而 Report︱Basis Picture(基图示)只显示当前基(Basis )的非零系数。
  • Report︱Tableau
    Report︱Tableau(单纯形表)显示当前单纯形表.
  • Report︱Formulation
    Report︱Formulation(模型)显示当前模型(或其指定的部分)。
  • Report︱Show Column
    Report︱Show Column(显示列)显示模型中你选定的列的信息.
  • Report︱Positive Definite
    Report︱Positive Definite(正定)判断二次规划的目标函数中的二次是否正定(只对 QP 问题有效,也就是说只有当前内存中的模型是一个二次规划模型时,这个命令才有意义).

LINDO 命令窗口

你随时可以通过菜单命令“Window︱Open Command Window(Alt+C)”打开命令窗口,在命令窗口下操作
image.png
INFORMATION(信息类命令)

  • HELP 命令
    输入“HELP”会显示出 LINDO 的一般帮助信息.通过输入"HELP name",LINDO 可帮助你了解某个具体的命令,其中"name"是命令名.
  • COMMAND(COM)命令
    给出按类型分类的 LINDO 命令目录,参见图 2-35.
  • LOCAL(LOC)命令
    给出该程序的版本信息.
  • CATEGORY(CAY)命令
    列出 LINDO 命令类型,并可按提示有选择地给出某类型下的所有命令.
  • TIME 命令
    显示本次启动 LINDO 后累计的运行时间.
  • DATE 命令
    显示当前命令的日期和时间.
    INPUT (输入类命令)
  • MAX/MIN 命令
    用于输入一个包含目标函数,约束条件在内的 LP 模型.输入过程如下:在提示符" :“下输入"MAX”(或"MIN"),继之以自然格式的目标函数作为第一行;再输入"SUBJECT TO"或"SUCH THAT"(可简写为"ST"或"S.T."),后面跟约束条件行.每次回车后将显示"?"提示符.最后,输入"END"回到命令状态模式.可以看出,这和 Windows 环境下在 LINDO 模式窗口中输入一个程序是类似的.其中,变量名可以由1~8个字母或数字型的字符构成,且第一个字符必须是字母.变量系数不能为指数型,列如:.258E+29 形成的系数是不允许的,任一系数的整数位数最多为 9 位,小数位数最多位五位.关键词(“MAX”,“ST”,“END”…)及各行之间必须用一个或多个空格分隔开.空格可以出现在一行之间,但不能出现在变量名中.一个回车符等价一个空格.
  • RETRIEVE(RETR)命令
    执行该命令可直接从硬盘上的文件中获得一个 LINDO 格式的模型。LINDO 会为你提示可供选择的具体的文件名。能被 RETRIEVE 的模型文件必须是以前经“SAVE”行命令存入的模型(后缀通常的“lpk”,即 LINDO 压缩格式文件),而不能是LINDO 文本格式文件(后缀通常是“ltx”)。
  • RMPS 命令
    读取一个 MPS 格式文件,并转化成 LINDI 格式的模型LINDO 会为你提示可供选:
    • N
      !显示解答
    • SOLU
      !在屏幕上显示一段提示信息
    • PAUS 第一模型求解成功,按 R 键或 Resume 按钮继续!
      !关闭文件“RESULT0201.txt”
    • RVRT
      !回到执行本命令脚本前的会话模式
    • BAT
      !结束,退出本命令脚本文件

Lingo文件类型

  • 后缀“lg4表示 LINGO 格式的模型文件,是一种特殊的二进制格式文件,保存了我们在模型窗口中所能够看到的所有文本和其他对象及其格式信息,只有 LILNGO 能读出它,用其他系统打开这种文件是出现乱码;
  • 后缀“lng”表示文本格式的模型文件,并且以这个格式保存模型时 LINGO 将给出警告,因为模型中的格式信息(如字体、颜色、嵌入对象等)将会丢失;
    image.png

Lingo报告窗口

image.png

  • Variables(变量数量):其中包括变量总数(Total)、非线性变量数(Nonlinear)、整数变量数(Integer).
  • Constraints(约束数量):包括约束总数(Total)、非线性束个数(Nonlinear).
  • Nonzeros(非零系数数量):包括总数(Total)、非线性项的系数个数(Nonlinear).
  • Generator Memory Used(K)(内存使用量):单位为千字节(K).
  • Elapsed Runtime(hh:mm:ss)(求解花费的时间):显示格式是“时:分:秒”.
    image.png

运算符和函数

  • 运算符及其优先级
  1. 算术运算符实际上就是加、减、乘方等数学运算(即数与数之间的运算,运算结果也是数)。LINGO 中的算术运算符有以下 5 种:
    +(加法), -(减法或负号),*(乘法),/(除法),^(求幂).
  2. 逻辑运算符就是结果只有"真(TRUE)“和"假(FALSE)”两个值(称为"逻辑值”)的运算,LINGO 中用数学 1 代表 TRUE,其它值(典型的值是 0)都是 FALSE.Z 在 LINGO 中,逻辑运算(表达式)通常作为过滤条件使用(回顾一下,在例3.3中定义约束时\例3.6中定义稀疏集合约束时,都多次使用了逻辑表达式作为过滤条件使用)LINGO 中的辑运符有 9 种,可以分为两类:
    (1)#AND#(与),#NOD#(非):这3个运算是逻辑值之间的运算,也就是它们操作的对象本身必须已经是逻辑值或逻辑表达式…计算结果也是逻辑值,
    (2)#EQ#(等于).#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于).#LE#(小于等于):
    这 6 个操作实际上是"数与数之间"的比较,也就是它们操作的对象本身必须是两个数.
    而逻辑表达式计算得到的结果是逻辑值
  3. 关系运算符表示的是"数与数之间"的大小关系.因此在 LINGO 中用来表示优化模型的约束条件,所以可以认为不是真正的操作运算符.LINGO 中关系运算符有三种:
    <(即<=,小于等于).=(等于),>(即>=,大于等于)
    请注意在优化模型中约束一般,没有严格小于,严格大于关系.此外,请注意区分运算符与"数与数之间"进行比较的 6 个逻辑运算符的不同之处
  • 基本的数学函数
    在 LINGO 中建立优化模型时引用大量的内部函数这些函数以"@"负号打头.
    LINGO 中包括相当丰富的数学函数,这些函数的用法非常简单,我们直接在下一一列出
    image.png
LINGO是用来求解线性和非线性优化问题的简易工具LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。 §1 LINGO快速入门 当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口: 外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。下面举两个例子。 例1.1 如何在LINGO中求解如下的LP问题: 在模型窗口中输入如下代码: min=2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600; 然后点击工具条上的按钮 即可。 例1.2 使用LINGO软件计算6个发点8个收点的最小费用运输问题。产销单位运价如下表。 单 位 销地 运 价 产地 B1 B2 B3 B4 B5 B6 B7 B8 产量 A1 6 2 6 7 4 2 5 9 60 A2 4 9 5 3 8 5 8 2 55 A3 5 2 1 9 7 4 3 3 51 A4 7 6 7 3 9 2 7 1 43 A5 2 3 9 5 7 2 6 5 41 A6 5 5 2 2 8 1 4 3 52 销量 35 37 22 32 41 32 43 38 使用LINGO软件,编制程序如下: model: !6发点8收点运输问题; sets: warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand; links(warehouses,vendors): cost, volume; endsets !目标函数; min=@sum(links: cost*volume); !需求约束; @for(vendors(J): @sum(warehouses(I): volume(I,J))=demand(J)); !产量约束; @for(warehouses(I): @sum(vendors(J): volume(I,J))<=capacity(I)); !这里是数据; data: capacity=60 55 51 43 41 52; demand=35 37 22 32 41 32 43 38; cost=6 2 6 7 4 2 9 5 4 9 5 3 8 5 8 2 5 2 1 9 7 4 3 3 7 6 7 3 9 2 7 1 2 3 9 5 7 2 6 5 5 5 2 2 8 1 4 3; enddata end 然后点击工具条上的按钮 即可。 为了能够使用LINGO的强大功能,接着第二节的学习吧。 §2 LINGO中的集 对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等。LINGO允许把这些相联系的对象聚合成集(sets)。一旦把对象聚合成集,就可以利用集来最大限度的发挥LINGO建模语言的优势。 现在我们将深入介绍如何创建集,并用数据初始化集的属性。学完本节后,你对基于建模技术的集如何引入模型会有一个基本的理解。 2.1 为什么使用集 集是LINGO建模语言的基础,是程序设计最强有力的基本构件。借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。 2.2 什么是集 集是一群相联系的对象,这些对象也称为集的成员。一个集可能是一系列产品、卡车或雇员。每个集成员可能有一个或多个之有关联的特征,我们把这些特征称为属性。属性值可以预先给定,也可以是未知的,有待于LINGO求解。例如,产品集中的每个产品可以有一个价格属性;卡车集中的每辆卡车可以有一个牵引力属性;雇员集中的每位雇员可以有一个薪水属性,也可以有一个生日属性等等。 LINGO有两种类型的集:原始集(primitive set)和派生集(derived set)。 一个原始集是由一些最基本的对象组成的。 一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的集。 2.3 模型的集部分 集部分是LINGO模型的一个可选部分。在LINGO模型中使用集之前,必须在集部分事先定义。集部分以关键字“sets:”开始,以“endsets”结束。一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分。一个集部分可以放置于模型的任何地方,但是一个集及其属性在模型约束中被引用之前必须定义了它们。 2.3.1 定义原始集 为了定义一个原始集,必须详细声明: •集的名字 •可选,集的成员 •可选,集成员的属性 定义一个原始集,用下面的语法: setname[/member_list/][:attribute_list]; 注意:用“[]”表示该部分内容可选。下同,不再赘述。 Setname是你选择的来标记集的名字,最好具有较强的可读性。集名字必须严格符合标准命名规则:以拉丁字母或下划线(_)为首字符,其后由拉丁字母(A—Z)、下划线、阿拉伯数字(0,1,…,9)组成的总长度不超过32个字符的字符串,且不区分大小写。 注意:该命名规则同样适用于集成员名和属性名等的命名。 Member_list是集成员列表。如果集成员放在集定义中,那么对它们可采取显式罗列和隐式罗列两种方式。如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。 ① 当显式罗列成员时,必须为每个成员输入一个不同的名字,中间用空格或逗号搁开,允许混合使用。 例2.1 可以定义一个名为students的原始集,它具有成员John、Jill、Rose和Mike,属性有sex和age: sets: students/John Jill, Rose Mike/: sex, age; endsets ② 当隐式罗列成员时,不必罗列出每个集成员。可采用如下语法: setname/member1..memberN/[: attribute_list]; 这里的member1是集的第一个成员名,memberN是集的最末一个成员名。LINGO将自动产生中间的所有成员名。LINGO也接受一些特定的首成员名和末成员名,用于创建一些特殊的集。列表如下: 隐式成员列表格式 示例 所产生集成员 1..n 1..5 1,2,3,4,5 StringM..StringN Car2..car14 Car2,Car3,Car4,…,Car14 DayM..DayN Mon..Fri Mon,Tue,Wed,Thu,Fri MonthM..MonthN Oct..Jan Oct,Nov,Dec,Jan MonthYearM..MonthYearN Oct2001..Jan2002 Oct2001,Nov2001,Dec2001,Jan2002 ③ 集成员不放在集定义中,而在随后的数据部分来定义。 例2.2 !集部分; sets: students:sex,age; endsets !数据部分; data: students,sex,age= John 1 16 Jill 0 14 Rose 0 17 Mike 1 13; enddata 注意:开头用感叹号(!),末尾用分号(;)表示注释,可跨多行。 在集部分只定义了一个集students,并未指定成员。在数据部分罗列了集成员John、Jill、Rose和Mike,并对属性sex和age分别给出了值。 集成员无论用何种字符标记,它的索引都是从1开始连续计数。在attribute_ list可以指定一个或多个集成员的属性,属性之间必须用逗号隔开。 可以把集、集成员和集属性同C语言中的结构体作个类比。如下图: 集 ←→ 结构体 集成员 ←→ 结构体的域 集属性 ←→ 结构体实例 LINGO内置的建模语言是一种描述性语言,用它可以描述现实世界中的一些问题,然后再借助于LINGO求解器求解。因此,集属性的值一旦在模型中被确定,就不可能再更改。在LINGO中,只有在初始部分中给出的集属性值在以后的求解中可更改。这前面并不矛盾,初始部分是LINGO求解器的需要,并不是描述问题所必须的。 2.3.2 定义派生集 为了定义一个派生集,必须详细声明: •集的名字 •父集的名字 •可选,集成员 •可选,集成员的属性 可用下面的语法定义一个派生集: setname(parent_set_list)[/member_list/][:attribute_list]; setname是集的名字。parent_set_list是已定义的集的列表,多个时必须用逗号隔开。如果没有指定成员列表,那么LINGO会自动创建父集成员的所有组合作为派生集的成员。派生集的父集既可以是原始集,也可以是其它的派生集。 例2.3 sets: product/A B/; machine/M N/; week/1..2/; allowed(product,machine,week):x; endsets LINGO生成了三个父集的所有组合共八组作为allowed集的成员。列表如下: 编号 成员 1 (A,M,1) 2 (A,M,2) 3 (A,N,1) 4 (A,N,2) 5 (B,M,1) 6 (B,M,2) 7 (B,N,1) 8 (B,N,2) 成员列表被忽略时,派生集成员由父集成员所有的组合构成,这样的派生集成为稠密集。如果限制派生集的成员,使它成为父集成员所有组合构成的集合的一个子集,这样的派生集成为稀疏集。同原始集一样,派生集成员的声明也可以放在数据部分。一个派生集的成员列表有两种方式生成:①显式罗列;②设置成员资格过滤器。当采用方式①时,必须显式罗列出所有要包含在派生集中的成员,并且罗列的每个成员必须属于稠密集。使用前面的例子,显式罗列派生集的成员: allowed(product,machine,week)/A M 1,A N 2,B N 1/; 如果需要生成一个大的、稀疏的集,那么显式罗列就很讨厌。幸运地是许多稀疏集的成员都满足一些条件以和非成员相区分。我们可以把这些逻辑条件看作过滤器,在LINGO生成派生集的成员时把使逻辑条件为假的成员从稠密集中过滤掉。 例2.4 sets: !学生集:性别属性sex,1表示男性,0表示女性;年龄属性age. ; students/John,Jill,Rose,Mike/:sex,age; !男学生和女学生的联系集:友好程度属性friend,[0,1]之间的数。 ; linkmf(students,students)|sex(&1) #eq# 1 #and# sex(&2) #eq# 0: friend; !男学生和女学生的友好程度大于0.5的集; linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x; endsets data: sex,age = 1 16 0 14 0 17 0 13; friend = 0.3 0.5 0.6; enddata 用竖线(|)来标记一个成员资格过滤器的开始。#eq#是逻辑运算符,用来判断是否“相等”,可参考§4. &1可看作派生集的第1个原始父集的索引,它取遍该原始父集的所有成员;&2可看作派生集的第2 个原始父集的索引,它取遍该原始父集的所有成员;&3,&4,……,以此类推。注意如果派生集B的父集是另外的派生集A,那么上面所说的原始父集是集A向前回溯到最终的原始集,其顺序保持不变,并且派生集A的过滤器对派生集B仍然有效。因此,派生集的索引个数是最终原始父集的个数,索引的取值是从原始父集到当前派生集所作限制的总和。 总的来说,LINGO可识别的集只有两种类型:原始集和派生集。 在一个模型中,原始集是基本的对象,不能再被拆分成更小的组分。原始集可以由显式罗列和隐式罗列两种方式来定义。当用显式罗列方式时,需在集成员列表中逐个输入每个成员。当用隐式罗列方式时,只需在集成员列表中输入首成员和末成员,而中间的成员由LINGO产生。 另一方面,派生集是由其它的集来创建。这些集被称为该派生集的父集(原始集或其它的派生集)。一个派生集既可以是稀疏的,也可以是稠密的。稠密集包含了父集成员的所有组合(有时也称为父集的笛卡尔乘积)。稀疏集仅包含了父集的笛卡尔乘积的一个子集,可通过显式罗列和成员资格过滤器这两种方式来定义。显式罗列方法就是逐个罗列稀疏集的成员。成员资格过滤器方法通过使用稀疏集成员必须满足的逻辑条件从稠密集成员中过滤出稀疏集的成员。不同集类型的关系见下图。 §3 模型的数据部分和初始部分 在处理模型的数据时,需要为集指派一些成员并且在LINGO求解模型之前为集的某些属性指定值。为此,LINGO为用户提供了两个可选部分:输入集成员和数据的数据部分(Data Section)和为决策变量设置初始值的初始部分(Init Section)。 3.1 模型的数据部分 3.1.1 数据部分入门 数据部分提供了模型相对静止部分和数据分离的可能性。显然,这对模型的维护和维数的缩放非常便利。 数据部分以关键字“data:”开始,以关键字“enddata”结束。在这里,可以指定集成员、集的属性。其语法如下: object_list = value_list; 对象列(object_list)包含要指定值的属性名、要设置集成员的集名,用逗号或空格隔开。一个对象列中至多有一个集名,而属性名可以有任意多。如果对象列中有多个属性名,那么它们的类型必须一致。如果对象列中有一个集名,那么对象列中所有的属性的类型就是这个集。 数值列(value_list)包含要分配给对象列中的对象的值,用逗号或空格隔开。注意属性值的个数必须等于集成员的个数。看下面的例子。 例3.1 sets: set1/A,B,C/: X,Y; endsets data: X=1,2,3; Y=4,5,6; enddata 在集set1中定义了两个属性X和Y。X的三个值是1、2和3,Y的三个值是4、5和6。也可采用如下例子中的复合数据声明(data statement)实现同样的功能。 例3.2 sets: set1/A,B,C/: X,Y; endsets data: X,Y=1 4 2 5 3 6; enddata 看到这个例子,可能会认为X被指定了1、4和2三个值,因为它们是数值列中前三个,而正确的答案是1、2和3。假设对象列有n个对象,LINGO在为对象指定值时,首先在n个对象的第1个索引处依次分配数值列中的前n个对象,然后在n个对象的第2个索引处依次分配数值列中紧接着的n个对象,……,以此类推。 模型的所有数据——属性值和集成员——被单独放在数据部分,这可能是最规范的数据输入方式。 3.1.2 参数 在数据部分也可以指定一些标量变量(scalar variables)。当一个标量变量在数据部分确定时,称之为参数。看一例,假设模型中用利率8.5%作为一个参数,就可以象下面一样输入一个利率作为参数。 例3.3 data: interest_rate = .085; enddata 也可以同时指定多个参数。 例3.4 data: interest_rate,inflation_rate = .085 .03; enddata 3.1.3 实时数据处理 在某些情况,对于模型中的某些数据并不是定值。譬如模型中有一个通货膨胀率的参数,我们想在2%至6%范围内,对不同的值求解模型,来观察模型的结果对通货膨胀的依赖有多么敏感。我们把这种情况称为实时数据处理(what if analysis)。LINGO有一个特征可方便地做到这件事。 在本该放数的地方输入一个问号(?)。 例3.5 data: interest_rate,inflation_rate = .085 ?; enddata 每一次求解模型时,LINGO都会提示为参数inflation_rate输入一个值。在WINDOWS操作系统下,将会接收到一个类似下面的对话框: 直接输入一个值再点击OK按钮,LINGO就会把输入的值指定给inflation_rate,然后继续求解模型。 除了参数之外,也可以实时输入集的属性值,但不允许实时输入集成员名。 3.1.4 指定属性为一个值 可以在数据声明的右边输入一个值来把所有的成员的该属性指定为一个值。看下面的例子。 例3.6 sets: days /MO,TU,WE,TH,FR,SA,SU/:needs; endsets data: needs = 20; enddata LINGO将用20指定days集的所有成员的needs属性。对于多个属性的情形,见下例。 例3.7 sets: days /MO,TU,WE,TH,FR,SA,SU/:needs,cost; endsets data: needs cost = 20 100; enddata 3.1.5 数据部分的未知数值 有时只想为一个集的部分成员的某个属性指定值,而让其余成员的该属性保持未知,以便让LINGO去求出它们的最优值。在数据声明中输入两个相连的逗号表示该位置对应的集成员的属性值未知。两个逗号间可以有空格。 例3.8 sets: years/1..5/: capacity; endsets data: capacity = ,34,20,,; enddata 属性capacity的第2个和第3个值分别为34和20,其余的未知。 3.2 模型的初始部分 初始部分是LINGO提供的另一个可选部分。在初始部分中,可以输入初始声明(initialization statement),和数据部分中的数据声明相同。对实际问题的建模时,初始部分并不起到描述模型的作用,在初始部分输入的值仅被LINGO求解器当作初始点来用,并且仅仅对非线性模型有用。和数据部分指定变量的值不同,LINGO求解器可以自由改变初始部分初始化的变量的值。 一个初始部分以“init:”开始,以“endinit”结束。初始部分的初始声明规则和数据部分的数据声明规则相同。也就是说,我们可以在声明的左边同时初始化多个集属性,可以把集属性初始化为一个值,可以用问号实现实时数据处理,还可以用逗号指定未知数值。 例3.9 init: X, Y = 0, .1; endinit Y=@log(X); X^2+Y^2<=1; 好的初始点会减少模型的求解时间。 在这一节中,我们仅带大家接触了一些基本的数据输入和初始化概念,不过现在你应该可以轻松的为自己的模型加入原始数据和初始部分啦。 §4 LINGO函数 有了前几节的基础知识,再加上本节的内容,你就能够借助于LINGO建立并求解复杂的优化模型了。 LINGO有9种类型的函数: 1. 1. 基本运算符:包括算术运算符、逻辑运算符和关系运算符 2. 2. 数学函数:三角函数和常规的数学函数 3. 3. 金融函数:LINGO提供的两种金融函数 4. 4. 概率函数:LINGO提供了大量概率相关的函数 5. 5. 变量界定函数:这类函数用来定义变量的取值范围 6. 6. 集操作函数:这类函数为对集的操作提供帮助 7. 7. 集循环函数:遍历集的元素,执行一定的操作的函数 8. 8. 数据输入输出函数:这类函数允许模型和外部数据源相联系,进行数据的输入输出 9. 9. 辅助函数:各种杂类函数 4.1 基本运算符 这些运算符是非常基本的,甚至可以不认为它们是一类函数。事实上,在LINGO中它们是非常重要的。 4.1.1 算术运算符 算术运算符是针对数值进行操作的。LINGO提供了5种二元运算符: ^ 乘方 ﹡ 乘 / 除 ﹢ 加 ﹣ 减 LINGO唯一的一元算术运算符是取反函数“﹣”。 这些运算符的优先级由高到底为: 高 ﹣(取反)   ^     ﹡/   低 ﹢﹣ 运算符的运算次序为从左到右按优先级高低来执行。运算的次序可以用圆括号“()”来改变。 例4.1 算术运算符示例。 2﹣5/3,(2﹢4)/5等等。 4.1.2 逻辑运算符 在LINGO中,逻辑运算符主要用于集循环函数的条件表达式中,来控制在函数中哪些集成员被包含,哪些被排斥。在创建稀疏集时用在成员资格过滤器中。 LINGO具有9种逻辑运算符: #not#  否定该操作数的逻辑值,#not#是一个一元运算符 #eq#  若两个运算数相等,则为true;否则为flase #ne# 若两个运算符不相等,则为true;否则为flase #gt# 若左边的运算符严格大于右边的运算符,则为true;否则为flase #ge#  若左边的运算符大于或等于右边的运算符,则为true;否则为flase #lt#  若左边的运算符严格小于右边的运算符,则为true;否则为flase #le#  若左边的运算符小于或等于右边的运算符,则为true;否则为flase #and#  仅当两个参数都为true时,结果为true;否则为flase #or# 仅当两个参数都为false时,结果为false;否则为true 这些运算符的优先级由高到低为: 高 #not# #eq# #ne# #gt# #ge# #lt# #le# 低 #and# #or# 例4.2 逻辑运算符示例 2 #gt# 3 #and# 4 #gt# 2,其结果为假(0)。 4.1.3 关系运算符 在LINGO中,关系运算符主要是被用在模型中,来指定一个表达式的左边是否等于、小于等于、或者大于等于右边,形成模型的一个约束条件。关系运算符逻辑运算符#eq#、#le#、#ge#截然不同,前者是模型中该关系运算符所指定关系的为真描述,而后者仅仅判断一个该关系是否被满足:满足为真,不满足为假。 LINGO有三种关系运算符:“=”、“=”。LINGO中还能用“”表示大于等于关系。LINGO并不支持严格小于和严格大于关系运算符。然而,如果需要严格小于和严格大于关系,比如让A严格小于B:A<B, 那么可以把它变成如下的小于等于表达式:A+ε<=B, 这里ε是一个小的正数,它的值依赖于模型中A小于B多少才算不等。 下面给出以上三类操作符的优先级: 高 #not# ﹣(取反)   ^     ﹡ /   ﹢﹣ #eq# #ne# #gt# #ge# #lt# #le# #and# #or# 低 = 4.2 数学函数 LINGO提供了大量的标准数学函数: @abs(x) 返回x的绝对值 @sin(x) 返回x的正弦值,x采用弧度制 @cos(x) 返回x的余弦值 @tan(x) 返回x的正切值 @exp(x) 返回常数e的x次方 @log(x) 返回x的自然对数 @lgm(x) 返回x的gamma函数的自然对数 @sign(x) 如果x=0时,返回不超过x的最大整数;当x= required(J)); end 计算的部分结果为 Global optimal solution found at iteration: 0 Objective value: 22.00000 Variable Value Reduced Cost REQUIRED( MON) 20.00000 0.000000 REQUIRED( TUE) 16.00000 0.000000 REQUIRED( WED) 13.00000 0.000000 REQUIRED( THU) 16.00000 0.000000 REQUIRED( FRI) 19.00000 0.000000 REQUIRED( SAT) 14.00000 0.000000 REQUIRED( SUN) 12.00000 0.000000 START( MON) 8.000000 0.000000 START( TUE) 2.000000 0.000000 START( WED) 0.000000 0.3333333 START( THU) 6.000000 0.000000 START( FRI) 3.000000 0.000000 START( SAT) 3.000000 0.000000 START( SUN) 0.000000 0.000000 从而解决方案是:每周最少需要22个职员,周一安排8人,周二安排2人,周三无需安排人,周四安排6人,周五和周六都安排3人,周日无需安排人。 4.8 输入和输出函数 输入和输出函数可以把模型和外部数据比如文本文件、数据库和电子表格等连接起来。 1.@file函数 该函数用从外部文件中输入数据,可以放在模型中任何地方。该函数的语法格式为@file(’filename’)。这里filename是文件名,可以采用相对路径和绝对路径两种表示方式。@file函数对同一文件的两种表示方式的处理和对两个不同的文件处理是一样的,这一点必须注意。 例4.14 以例1.2来讲解@file函数的用法。 注意到在例1.2的编码中有两处涉及到数据。第一个地方是集部分的6个warehouses集成员和8个vendors集成员;第二个地方是数据部分的capacity,demand和cost数据。 为了使数据和我们的模型完全分开,我们把它们移到外部的文本文件中。修改模型代码以便于用@file函数把数据从文本文件中拖到模型中来。修改后(修改处代码黑体加粗)的模型代码如下: model: !6发点8收点运输问题; sets: warehouses/ @file('1_2.txt') /: capacity; vendors/ @file('1_2.txt') /: demand; links(warehouses,vendors): cost, volume; endsets !目标函数; min=@sum(links: cost*volume); !需求约束; @for(vendors(J): @sum(warehouses(I): volume(I,J))=demand(J)); !产量约束; @for(warehouses(I): @sum(vendors(J): volume(I,J))= required(J)); end 3.@ole函数 @OLE是从EXCEL中引入或输出数据的接口函数,它是基于传输的OLE技术。OLE传输直接在内存中传输数据,并不借助于中间文件。当使用@OLE时,LINGO先装载EXCEL,再通知EXCEL装载指定的电子数据表,最后从电子数据表中获得Ranges。为了使用OLE函数,必须有EXCEL5及其以上版本。OLE函数可在数据部分和初始部分引入数据。 @OLE可以同时读集成员和集属性,集成员最好用文本格式,集属性最好用数值格式。原始集每个集成员需要一个单元(cell),而对于n元的派生集每个集成员需要n个单元,这里第一行的n个单元对应派生集的第一个集成员,第二行的n个单元对应派生集的第二个集成员,依此类推。 @OLE只能读一维或二维的Ranges(在单个的EXCEL工作表(sheet)中),但不能读间断的或三维的Ranges。Ranges是自左而右、自上而下来读。 例4.16 sets: PRODUCT; !产品; MACHINE; !机器; WEEK; !周; ALLOWED(PRODUCT,MACHINE,WEEK):x,y; !允许组合及属性; endsets data: rate=0.01; PRODUCT,MACHINE,WEEK,ALLOWED,x,y=@OLE('D:\IMPORT.XLS'); @OLE('D:\IMPORT.XLS')=rate; enddata 代替在代码文本的数据部分显式输入形式,我们把相关数据全部放在如下电子数据表中来输入。下面是D:\IMPORT.XLS的图表。 除了输入数据之外,我们也必须定义Ranges名:PRODUCT,MACHINE,WEEK,ALLOWED,x,y. 明确的,我们需要定义如下的Ranges名: Name Range PRODUCT B3:B4 MACHINE C3:C4 WEEK D3:D5 ALLOWED B8:D10 X F8:F10 Y G8:G10 rate C13 为了在EXCEL中定义Ranges名: ① 按鼠标左键拖曳选择Range, ② 释放鼠标按钮, ③ 选择“插入|名称|定义”, ④ 输入希望的名字, ⑤ 点击“确定”按钮。 我们在模型的数据部分用如下代码从EXECL中引入数据: PRODUCT,MACHINE,WEEK,ALLOWED,x,y=@OLE('D:\IMPORT.XLS'); @OLE('D:\IMPORT.XLS')=rate; 等价的描述为 PRODUCT,MACHINE,WEEK,ALLOWED,x,y =@OLE('D:\IMPORT.XLS', PRODUCT,MACHINE,WEEK,ALLOWED,x,y); @OLE('D:\IMPORT.XLS',rate)=rate; 这一等价描述使得变量名和Ranges不同亦可。 4.@ranged(variable_or_row_name) 为了保持最优基不变,变量的费用系数或约束行的右端项允许减少的量。 5.@rangeu(variable_or_row_name) 为了保持最优基不变,变量的费用系数或约束行的右端项允许增加的量。 6.@status() 返回LINGO求解模型结束后的状态: 0 Global Optimum(全局最优) 1 Infeasible(不可行) 2 Unbounded(无界) 3 Undetermined(不确定) 4 Feasible(可行) 5 Infeasible or Unbounded(通常需要关闭“预处理”选项后重新求解模型,以确定模型究竟是不可行还是无界) 6 Local Optimum(局部最优) 7 Locally Infeasible(局部不可行,尽管可行解可能存在,但是LINGO并没有找到一个) 8 Cutoff(目标函数的截断值被达到) 9 Numeric Error(求解器因在某约束中遇到无定义的算术运算而停止) 通常,如果返回值不是0、4或6时,那么解将不可信,几乎不能用。该函数仅被用在模型的数据部分来输出数据。 例4.17 model: min=@sin(x); data: @text()=@status(); enddata end 部分计算结果为: Local optimal solution found at iteration: 33 Objective value: -1.000000 Variable Value Reduced Cost X 4.712388 0.000000 结果中的6就是@status()返回的结果,表明最终解是局部最优的。 7.@dual @dual(variable_or_row_name)返回变量的判别数(检验数)或约束行的对偶(影子)价格(dual prices)。 4.9 辅助函数 1.@if(logical_condition,true_result,false_result) @if函数将评价一个逻辑表达式logical_condition,如果为真,返回true_ result,否则返回false_result。 例4.18 求解最优化问题LINGO代码如下: model: min=fx+fy; fx=@if(x #gt# 0, 100,0)+2*x; fy=@if(y #gt# 0,60,0)+3*y; x+y>=30; end 2.@warn(’text’,logical_condition) 如果逻辑条件logical_condition为真,则产生一个内容为’text’的信息框。 例4.19 示例。 model: x=1; @warn('x是正数',x #gt# 0); end §5 LINGO WINDOWS命令 5.1 文件菜单(File Menu) 1. 1. 新建(New) 从文件菜单中选用“新建”命令、单击“新建”按钮或直接按F2键可以创建一个新的“Model”窗口。在这个新的“Model”窗口中能够输入所要求解的模型。 2. 2. 打开(Open) 从文件菜单中选用“打开”命令、单击“打开”按钮或直接按F3键可以打开一个已经存在的文本文件。这个文件可能是一个Model文件。 3. 3. 保存(Save) 从文件菜单中选用“保存”命令、单击“保存”按钮或直接按F4键用来保存当前活动窗口(最前台的窗口)中的模型结果、命令序列等保存为文件。 4. 4. 另存为...(Save As...) 从文件菜单中选用“另存为...”命令或按F5键可以将当前活动窗口中的内容保存为文本文件,其文件名为你在“另存为...”对话框中输入的文件名。利用这种方法你可以将任何窗口的内容如模型、求解结果或命令保存为文件。 5. 5. 关闭(Close) 在文件菜单中选用“关闭”(Close)命令或按F6键将关闭当前活动窗口。如果这个窗口是新建窗口或已经改变了当前文件的内容,LINGO系统将会提示是否想要保存改变后的内容。 6. 6. 打印(Print) 在文件菜单中选用“打印” (Print)命令、单击“打印”按钮或直接按F7键可以将当前活动窗口中的内容发送到打印机。 7. 7. 打印设置(Print Setup...) 在文件菜单中选用“打印设置...”命令或直接按F8键可以将文件输出到指定的打印机。 8. 8. 打印预览(Print Preview) 在文件菜单中选用“打印预览...”命令或直接按Shift+F8键可以进行打印预览。 9. 9. 输出到日志文件(Log Output...) 从文件菜单中选用“Log Output...”命令或按F9键打开一个对话框,用于生成一个日志文件,它存储接下来在“命令窗口”中输入的所有命令。 10.提交LINGO命令脚本文件(Take Commands...) 从文件菜单中选用“Take Commands...”命令或直接按F11键就可以将LINGO命令脚本(command script)文件提交给系统进程来运行。 11.引入LINGO文件(Import Lingo File...) 从文件菜单中选用“Import Lingo File...”命令或直接按F12键可以打开一个LINGO格式模型的文件,然后LINGO系统会尽可能把模型转化为LINGO语法允许的程序。 12.退出(Exit) 从文件菜单中选用“Exit”命令或直接按F10键可以退出LINGO系统。 5.2 编辑菜单(Edit Menu) 1. 1. 恢复(Undo) 从编辑菜单中选用“恢复”(Undo)命令或按Ctrl+Z组合键,将撤销上次操作、恢复至其前的状态。 2. 2. 剪切(Cut) 从编辑菜单中选用“剪切”(Cut)命令或按Ctrl+X组合键可以将当前选中的内容剪切至剪贴板中。 3. 3. 复制(Copy) 从编辑菜单中选用“复制”(Copy)命令、单击“复制”按钮或按Ctrl+C组合键可以将当前选中的内容复制到剪贴板中。 4. 4. 粘贴(Paste) 从编辑菜单中选用“粘贴”(Paste)命令、单击“粘贴”按钮或按Ctrl+V组合键可以将粘贴板中的当前内容复制到当前插入点的位置。 5. 5. 粘贴特定..(Paste Special。。) 上面的命令不同,它可以用于剪贴板中的内容不是文本的情形。 6. 全选(Select All) 从编辑菜单中选用“Select All”命令或按Ctrl+A组合键可选定当前窗口中的所有内容。 6. 7. 匹配小括号(Match Parenthesis) 从编辑菜单中选用“Match Parenthesis”命令、单击“Match Parenthesis”按钮或按Ctrl+P组合键可以为当前选中的开括号查找匹配的闭括号。 7. 8. 粘贴函数(Paste Function) 从编辑菜单中选用“Paste Function”命令可以将LINGO的内部函数粘贴到当前插入点。 5.3 LINGO菜单 1. 1. 求解模型(Slove) 从LINGO菜单中选用“求解”命令、单击“Slove”按钮或按Ctrl+S组合键可以将当前模型送入内存求解。 2. 2. 求解结果...(Solution...) 从LINGO菜单中选用“Solution...”命令、单击“Solution...”按钮或直接按Ctrl+O组合键可以打开求解结果的对话框。这里可以指定查看当前内存中求解结果的那些内容。 3. 3. 查看...(Look...) 从LINGO菜单中选用“Look...”命令或直接按Ctrl+L组合键可以查看全部的或选中的模型文本内容。 4. 4. 灵敏性分析(Range,Ctrl+R) 用该命令产生当前模型的灵敏性分析报告:研究当目标函数的费用系数和约束右端项在什么范围(此时假定其它系数不变)时,最优基保持不变。灵敏性分析是在求解模型时作出的,因此在求解模型时灵敏性分析是激活状态,但是默认是不激活的。为了激活灵敏性分析,运行LINGO|Options…,选择General Solver Tab, 在Dual Computations列表框中,选择Prices and Ranges选项。灵敏性分析耗费相当多的求解时间,因此当速度很关键时,就没有必要激活它。 下面我们看一个简单的具体例子。 例5.1某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。生产数据如下表所示: 每个书桌 每个餐桌 每个椅子 现有资源总数 木料 8单位 6单位 1单位 48单位 漆工 4单位 2单位 1.5单位 20单位 木工 2单位 1.5单位 0.5单位 8单位 成品单价 60单位 30单位 20单位 若要求桌子的生产量不超过5件,如何安排三种产品的生产可使利润最大? 用DESKS、TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。 max=60*desks+30*tables+20*chairs; 8*desks+6*tables+chairs<=48; 4*desks+2*tables+1.5*chairs<=20; 2*desks+1.5*tables+.5*chairs<=8; tables<=5; 求解这个模型,并激活灵敏性分析。这时,查看报告窗口(Reports Window),可以看到如下结果。 Global optimal solution found at iteration: 3 Objective value: 280.0000 Variable Value Reduced Cost DESKS 2.000000 0.000000 TABLES 0.000000 5.000000 CHAIRS 8.000000 0.000000 Row Slack or Surplus Dual Price 1 280.0000 1.000000 2 24.00000 0.000000 3 0.000000 10.00000 4 0.000000 10.00000 5 5.000000 0.000000 “Global optimal solution found at iteration: 3”表示3次迭代后得到全局最优解。 “Objective value:280.0000”表示最优目标值为280。 “Value”给出最优解中各变量的值:造2个书桌(desks), 0个餐桌(tables), 8个椅子(chairs)。所以desks、chairs是基变量(非0),tables是非基变量(0)。 “Slack or Surplus”给出松驰变量的值: 第1行松驰变量 =280(模型第一行表示目标函数,所以第二行对应第一个约束) 第2行松驰变量 =24 第3行松驰变量 =0 第4行松驰变量 =0 第5行松驰变量 =5 “Reduced Cost”列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时, 目标函数的变化率。其中基变量的reduced cost值应为0, 对于非基变量 Xj, 相应的 reduced cost值表示当某个变量Xj 增加一个单位时目标函数减少的量( max型问题)。本例中:变量tables对应的reduced cost值为5,表示当非基变量tables的值从0变为 1时(此时假定其他非基变量保持不变,但为了满足约束条件,基变量显然会发生变化),最优的目标函数值 = 280 - 5 = 275。 “DUAL PRICE”(对偶价格)表示当对应约束有微小变动时, 目标函数的变化率。输出结果中对应于每一个约束有一个对偶价格。 若其数值为p, 表示对应约束中不等式右端项若增加1 个单位,目标函数将增加p个单位(max型问题)。显然,如果在最优解处约束正好取等号(也就是“紧约束”,也称为有效约束或起作用约束),对偶价格值才可能不是0。本例中:第3、4行是紧约束,对应的对偶价格值为10,表示当紧约束 3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 20 变为 3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 21 时,目标函数值 = 280 +10 = 290。对第4行也类似。 对于非紧约束(如本例中第2、5行是非紧约束),DUAL PRICE 的值为0, 表示对应约束中不等式右端项的微小扰动不影响目标函数。有时, 通过分析DUAL PRICE, 也可对产生不可行问题的原因有所了解。 灵敏度分析的结果是 Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease DESKS 60.00000 0.0 0.0 TABLES 30.00000 0.0 0.0 CHAIRS 20.00000 0.0 0.0 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 48.00000 0.0 0.0 3 20.00000 0.0 0.0 4 8.000000 0.0 0.0 5 5.000000 0.0 0.0 目标函数中DESKS变量原来的费用系数为60,允许增加(Allowable Increase)=4、允许减少(Allowable Decrease)=2,说明当它在[60-4,60+20] = [56,80]范围变化时,最优基保持不变。对TABLES、CHAIRS变量,可以类似解释。由于此时约束没有变化(只是目标函数中某个费用系数发生变化),所以最优基保持不变的意思也就是最优解不变(当然,由于目标函数中费用系数发生了变化,所以最优值会变化)。 第2行约束中右端项(Right Hand Side,简写为RHS)原来为48,当它在[48-24,48+∞] = [24,∞]范围变化时,最优基保持不变。第3、4、5行可以类似解释。不过由于此时约束发生变化,最优基即使不变,最优解、最优值也会发生变化。 灵敏性分析结果表示的是最优基保持不变的系数范围。由此,也可以进一步确定当目标函数的费用系数和约束右端项发生小的变化时,最优基和最优解、最优值如何变化。下面我们通过求解一个实际问题来进行说明。 例5.2一奶制品加工厂用牛奶生产A1,A2两种奶制品,1桶牛奶可以在甲车间用12小时加工成3公斤A1,或者在乙车间用8小时加工成4公斤A2。根据市场需求,生产的A1,A2全部能售出,且每公斤A1获利24元,每公斤A2获利16元。现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间480小时,并且甲车间每天至多能加工100公斤A1,乙车间的加工能力没有限制。试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题: 1) 若用35元可以买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶? 2) 若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元? 3) 由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划? 模型代码如下: max=72*x1+64*x2; x1+x2<=50; 12*x1+8*x2<=480; 3*x1<=100; 求解这个模型并做灵敏性分析,结果如下。 Global optimal solution found at iteration: 0 Objective value: 3360.000 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 2 0.000000 48.00000 3 0.000000 2.000000 4 40.00000 0.000000 Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X1 72.00000 24.00000 8.000000 X2 64.00000 8.000000 16.00000 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 50.00000 10.00000 6.666667 3 480.0000 53.33333 80.00000 4 100.0000 INFINITY 40.00000 结果告诉我们:这个线性规划的最优解为x1=20,x2=30,最优值为z=3360,即用20桶牛奶生产A1, 30桶牛奶生产A2,可获最大利润3360元。输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析结果有用的信息,下面结合题目中提出的3个附加问题给予说明。 3个约束条件的右端不妨看作3种“资源”:原料、劳动时间、车间甲的加工能力。输出中Slack or Surplus给出这3种资源在最优解下是否有剩余:原料、劳动时间的剩余均为零,车间甲尚余40(公斤)加工能力。 目标函数可以看作“效益”,成为紧约束的“资源”一旦增加,“效益”必然跟着增长。输出中DUAL PRICES 给出这3种资源在最优解下“资源”增加1个单位时“效益”的增量:原料增加1个单位(1桶牛奶)时利润增长48(元),劳动时间增加1个单位(1小时)时利润增长2(元),而增加非紧约束车间甲的能力显然不会使利润增长。这里,“效益”的增量可以看作“资源”的潜在价值,经济学上称为影子价格,即1桶牛奶的影子价格为48元,1小时劳动的影子价格为2元,车间甲的影子价格为零。读者可以用直接求解的办法验证上面的结论,即将输入文件中原料约束milk)右端的50改为51,看看得到的最优值(利润)是否恰好增长48(元)。用影子价格的概念很容易回答附加问题1):用35元可以买到1桶牛奶,低于1桶牛奶的影子价格48,当然应该作这项投资。回答附加问题2):聘用临时工人以增加劳动时间,付给的工资低于劳动时间的影子价格才可以增加利润,所以工资最多是每小时2元。 目标函数的系数发生变化时(假定约束条件不变),最优解和最优值会改变吗?这个问题不能简单地回答。上面输出给出了最优基不变条件下目标函数系数的允许变化范围:x1的系数为(72-8,72+24)=(64,96);x2的系数为(64-16,64+8)=(48,72)。注意:x1系数的允许范围需要x2系数64不变,反之亦然。由于目标函数的费用系数变化并不影响约束条件,因此此时最优基不变可以保证最优解也不变,但最优值变化。用这个结果很容易回答附加问题3):若每公斤A1的获利增加到30元,则x1系数变为30×3=90,在允许范围内,所以不应改变生产计划,但最优值变为90×20+64×30=3720。 下面对“资源”的影子价格作进一步的分析。影子价格的作用(即在最优解下“资源”增加1个单位时“效益”的增量)是有限制的。每增加1桶牛奶利润增长48元(影子价格),但是,上9 面输出的CURRENT RHS 的ALLOWABLE INCREASE 和 ALLOWABLE DECREASE 给出了影子价格有意义条件下约束右端的限制范围: milk)原料最多增加10(桶牛奶),time)劳动时间最多增加53(小时)。现在可以回答附加问题1)的第2问:虽然应该批准用35元买1桶牛奶的投资,但每天最多购买10桶牛奶。顺便地说,可以用低于每小时2元的工资聘用临时工人以增加劳动时间,但最多增加53.3333小时。 需要注意的是:灵敏性分析给出的只是最优基保持不变的充分条件,而不一定是必要条件。比如对于上面的问题,“原料最多增加10(桶牛奶)”的含义只能是“原料增加10(桶牛奶)”时最优基保持不变,所以影子价格有意义,即利润的增加大于牛奶的投资。反过来,原料增加超过10(桶牛奶),影子价格是否一定没有意义?最优基是否一定改变?一般来说,这是不能从灵敏性分析报告中直接得到的。此时,应该重新用新数据求解规划模型,才能做出判断。所以,从正常理解的角度来看,我们上面回答“原料最多增加10(桶牛奶)”并不是完全科学的。 5. 5. 模型通常形式...(Generate...) 从LINGO菜单中选用“Generate...”命令或直接按Ctrl+G组合键可以创建当前模型的代数形式、LINGO模型或MPS格式文本。 6. 6. 选项...(Options...) 从LINGO菜单中选用“Options...”命令、单击“Options...”按钮或直接按Ctrl+I组合键可以改变一些影响LINGO模型求解时的参数。该命令将打开一个含有7个选项卡的窗口,你可以通过它修改LINGO系统的各种参数和选项。如上图。 修改完以后,你如果单击“Apply(应用)”按钮,则新的设置马上生效;如果单击“OK(确定)”按钮,则新的设置马上生效,并且同时关闭该窗口。如果单击“Save(保存)”按钮,则将当前设置变为默认设置,下次启动LINGO时这些设置仍然有效。单击“Default(缺省值)”按钮,则恢复LINGO系统定义的原始默认设置(缺省设置)。 5.4 窗口菜单(Windows Menu) 1. 1. 命令行窗口(Open Command Window) 从窗口菜单中选用“Open Command Window”命令或直接按Ctrl+1可以打开LINGO的命令行窗口。在命令行窗口中可以获得命令行界面,在“:”提示符后可以输入LINGO的命令行命令。 2. 2. 状态窗口(Status Window) 从窗口菜单中选用“Status Window”命令或直接按Ctrl+2可以打开LINGO的求解状态窗口。 如果在编译期间没有表达错误,那么LINGO将调用适当的求解器来求解模型。当求解器开始运行时,它就会显示如下的求解器状态窗口(LINGO Solver Status)。 求解器状态窗口对于监视求解器的进展和模型大小是有用的。求解器状态窗口提供了一个中断求解器按钮(Interrupt Solver),点击它会导致LINGO在下一次迭代时停止求解。在绝大多数情况,LINGO能够交还和报告到目前为止的最好解。一个例外是线性规划模型,返回的解是无意义的,应该被忽略。但这并不是一个问题,因为线性规划通常求解速度很快,很少需要中断。注意:在中断求解器后,必须小心解释当前解,因为这些解可能根本就不最优解、可能也不是可行解或者对线性规划模型来说就是无价值的。 在中断求解器按钮的右边的是关闭按钮(Close)。点击它可以关闭求解器状态窗口,不过可在任何时间通过选择Windows|Status Window再重新打开。 在中断求解器按钮的右边的是标记为更新时间间隔(Update Interval)的域。LINGO将根据该域指示的时间(以秒为单位)为周期更新求解器状态窗口。可以随意设置该域,不过若设置为0将导致更长的求解时间——LINGO花费在更新的时间会超过求解模型的时间。 变量框(Variables) Total显示当前模型的全部变量数,Nonlinear显示其中的非线性变量数,Integers显示其中的整数变量数。非线性变量是指它至少处于某一个约束中的非线性关系中。例如,对约束 X+Y=100; X和Y都是线性变量。对约束 X*Y=100; X和Y的关系是二次的,所以X和Y都是非线性变量。对约束 X*X+Y=100; X是二次方是非线性的,Y虽X构成二次关系,但X*X这个整体是一次的,因此Y是线性变量。被计数变量不包括LINGO确定为定值的变量。例如: X=1; X+Y=3; 这里X是1,由此可得Y是2,所以X和Y都是定值,模型中的X和Y都用1和2代换掉。 约束(Constraints)框 Total显示当前模型扩展后的全部约束数,Nonlinear显示其中的非线性约束数。非线性约束是该约束中至少有一个非线性变量。如果一个约束中的所有变量都是定值,那么该约束就被剔除出模型(该约束为真),不计入约束总数中。 非零(Nonzeroes)框 Total显示当前模型中全部非零系数的数目,Nonlinear显示其中的非线性变量系数的数目。 内存使用(Generator Memory Used,单位:K)框 显示当前模型在内存中使用的内存量。可以通过使用LINGO|Options命令修改模型的最大内存使用量。 已运行时间(Elapsed Runtime)框 显示求解模型到目前所用的时间,它可能受到系统中别的应用程序的影响。 求解器状态(Solver Status)框 显示当前模型求解器的运行状态。域的含义如下。 域名 含义 可能的显示 Model Class 当前模型的类型(请参阅本书第1章) LP,QP,ILP,IQP,PILP, PIQP,NLP,INLP,PINLP (以I开头表示IP,以PI开头表示PIP) State 当前解的状态 "Global Optimum", "Local Optimum", "Feasible", "Infeasible"(不可行), "Unbounded"(无界), "Interrupted"(中断), "Undetermined"(未确定) Objective 当前解的目标函数值 实数 Infeasibility 当前约束不满足的总量(不是不满足的约束的个数) 实数(即使该值=0,当前解也可能不可行,因为这个量中没有考虑用上下界形式给出的约束) Iterations 目前为止的迭代次数 非负整数 扩展求解器状态(Extended Solver Status)框 显示LINGO中几个特殊求解器的运行状态。包括分枝定界求解器(Branch-and- Bound Solver)、全局求解器(Global Solver)和多初始点求解器(Multistart Solver)。该框中的域仅当这些求解器运行时才会更新。域的含义如下。 域名 含义 可能的显示 Solver Type 使用的特殊求解程序 B-and-B (分枝定界法) Global (全局最优求解) Multistart(用多个初始点求解) Best Obj 目前为止找到的可行解的最佳目标函数值 实数 Obj Bound 目标函数值的界 实数 Steps 特殊求解程序当前运行步数: 分枝数(对B-and-B程序); 子问题数(对Global程序); 初始点数(对Multistart程序) 非负整数 Active 有效步数 非负整数 其余几个命令都是对窗口的排列,这里不作介绍,试一试便知。 5.5 帮助菜单(Help Menu) 1. 1. 帮助主题(Help Menu) 从帮助菜单中选用“Help Menu”可以打开LINGO的帮助文件。 2. 2. 关于LINGO(About Lingo) 关于当前LINGO的版本信息等。 §6 LINGO的命令行命令 以下将按类型列出在LINGO命令行窗口中使用的命令,每条命令后都附有简要的描述说明。 在平台中,从的窗口菜单中选用“Command Window”命令或直接按Ctrl+1可以打开LINGO的命令行窗口,便可以在命令提示符“:”后输入以下命令。 如果需要以下命令的详细描述说明,可以查阅LINGO的帮助。 1. 1. LINGO信息 Cat 显示所有命令类型 Com 按类型显示所用LINGO命令 Help 显示所需命令的简要帮助信息 Mem 显示内存变量的信息 2. 2. 输入(Input) model 以命令行方式输入一个模型 take 执行一个文件的命令正本或从磁盘中读取某个模型文件 3. 3.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JackHCC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值