python(三):时间窗口

本文介绍了一种基于Python的时间序列预测数据构造方法。通过设定时间步长和预测偏移量,从序列数据中构建训练集,适用于短期预测任务。代码示例清晰展示了如何将输入数据切分为特征和目标变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

train_X = []
train_y = []
# time_step = n 表示用n天的数据做预测
time_step = 4
# time_pred = 0 表示直接预测下一天的数据
time_move = 0

a = [i for i in range(10)]
for i in range(len(a) - time_step - time_move):
    train_X.append([a[i:i + time_step]])
    train_y.append([a[i + time_step + time_move]])

print(train_X)
print(train_y)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值