针对PV/ess的电动汽车充电站协同管理:一种多智能体深度强化学习方法
Cooperative Management for PV/ESS-Enabled Electric Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach
- 主要内容:动态数据下的实时调度
- 特别点:使用多智能体,基于CommNet,多个agent参数共享
主要思想
-
系统描述
- N个充电站(EVCS),用向量 C C C表示,一个充电站属于一个公司(用向量 Y Y Y表示),一个公司有多个充电站。充电站与储能设备(ESS)相连,属于一个公司的EVCS可以共享ESS的能量。用向量 P P P表示PV系统,将太阳能转化。向量 E E E表示ESS和EVCS的连接。向量 L L L表示充电站负荷。向量 V V V表示PV产生的能量。向量 H H H表示车辆用电需求。
-
**状态空间:**包括ESS状态、电价状态和负荷状态。用向量 O O O表示每个EVCS与ESS相连( E E E)的充电量。向量 D D D表示总的需求 D = L + H D=L+H D=L+H。最终状态用向量 S S S表示, s t n = [ o t n , E g , n m i n , E g , n m a x , p r i c e t , p r i c e t a v g , v t n , d t n ] s^n_t=[o^n_t,E^{min}_{g,n},E^{max}_{g,n},price_t,price_t^{avg},v^n_t,d^n_t] stn=[otn,Eg,nmin,Eg,nmax,pricet,pricetavg,v