多智能体强化学习,自动驾驶,车队调度,优化机制,协同控制
1. 背景介绍
随着自动驾驶技术的快速发展,自动驾驶车队调度已成为智能交通系统的重要组成部分。车队调度是指在满足特定需求的情况下,优化车辆的路径、速度和行驶时间,以提高运输效率和降低运营成本。传统的车队调度方法主要依赖于规则-基于的系统,但这些方法难以应对复杂的路况和动态的交通环境。
多智能体强化学习 (Multi-Agent Reinforcement Learning, MARL) 作为一种新兴的机器学习方法,能够有效地解决复杂系统的优化问题。MARL 允许多个智能体在相互交互和竞争的环境中学习最优策略,从而实现协同控制和资源分配。
2. 核心概念与联系
2.1 多智能体强化学习 (MARL)
MARL 是指多个智能体在同一个环境中相互交互,通过学习和调整策略来最大化自身的奖励。每个智能体都拥有自己的状态、动作和奖励函数,并通过与环境和其它智能体的交互来学习最优策略。
2.2 自动驾驶车队调度
自动驾驶车队调度是指在满足特定需求的情况下,优化车辆的路径、速度和行驶时间,以提高运输效率和降低运营成本。
2.3 核心概念联系
MARL 可以应