- 什么是系综平均?:
下图(来自知乎:卖艺的小青年)中集平均实际就是系综平均,按照随机信号分析的知识来分析,我们可以把这一系列函数看成一个随机信号,取定一个时间,我们就得到一个随机变量,而系综平均实际上就是某一时间点随机变量的期望。(时间平均当然就是某一个样本函数的均值,这里我们不予讨论)。
- 系综平均什么时候和时间平均相等?
首先说明这个问题的意义:
在现实中,我们不可能将一个系统复制无数遍进行试验求集平均,但是我们却可以进行长时间的观察,求出时间平均,这时,如果集平均和时间平均相等,我们就可以简单的将集平均求出。
然后,我们要说明什么是平稳随机过程:
下图(图片来自《随机信号分析(第四版)》作者:李晓峰 周宁 傅志中 李在铭)为严格随机平稳过程的定义,很简单,在我看来,就是概率密度函数不随时间变化,条件严格,更多用于理论研究,一般所说的 平稳性 都是指广义随机平稳。
下面是广义平稳随机过程的定义,只要求一二阶的矩具有移动不变性即可,条件较为宽松,更多用于实际研究:
下图给出了广义平稳信号满足均值具有各态历经性的条件,仅仅给出定理,证明请自行查阅。
最后,我们来说明集平均和时间平均相等的条件,只要实信号具有各态历经性,我们就可以说他的集平均和时间平均相等。
- 系综平均系统/集合平均滤波器
在最前面简单介绍以下原理,如果我们有多个添加了噪声的样本信号,而这个信号又具有各态历经性的话,我们完全可以对多个样本进行集合平均,达到滤波的目的。下面我们从信噪比的角度进行分析为什么集合平均可以提高信噪比:
假设我们有n个样本函数,均添加了高斯白噪声,设原本的信号为 S S S,平均功率为 P P P,设添加的高斯白噪声信号分别为 N i , i = 1 , 2 , 3 , . . . n N_i,i=1,2,3,...n Ni,i=1,2,3,...n,白噪声方差为 σ \sigma σ,那么我们可以得到添加了噪声信号的信噪比 L 1 = P σ 2 L_1=\frac{P}{\sigma^2} L1=σ2P(按我的理解,高斯白噪声均值为0
Ensemble Average(系综平均)(集平均)
最新推荐文章于 2022-09-27 11:40:27 发布