【SDE】随机微分方程(1)

Source of Randomness And Ito SDE

考虑如下常微分方程
{ d X ( t ) = a ( t , X ( t ) ) d t X ( 0 ) = x 0 \begin{cases} dX(t)=a(t, X(t))dt\\ X(0)=x_0 \end{cases} {dX(t)=a(t,X(t))dtX(0)=x0
随机性来源分析
(1) 初值随机化
{ d X t = a ( t , X t ) d t X 0 ( w ) = Y ( w ) \begin{cases} dX_t=a(t, X_t)dt\\ X_0(w)=Y(w) \end{cases} {dXt=a(t,Xt)dtX0(w)=Y(w)
(2) 随机噪声
d X t = a ( t , X t ) d t + b ( t , X t ) d B t dX_t=a(t, X_t)dt+b(t, X_t)dB_t dXt=a(t,Xt)dt+b(t,Xt)dBt
两边积分可以得到Ito-SDE
X t = X 0 + ∫ 0 t a ( s , X s ) d s ⏟ R i e m a n n . I n t e g r a l + ∫ 0 t b ( s , X s ) d B s ⏟ I t o . I n t e g r a l X_t=X_0+\underbrace{\int_0^ta(s, X_s)ds}_{Riemann. Integral}+\underbrace{\int_0^tb(s, X_s)dB_s}_{Ito. Integral} Xt=X0+Riemann.Integral 0ta(s,Xs)ds+Ito.Integral 0tb(s,Xs)dBs

SDE解的存在性和唯一性

Strong Solution
(1) X t X_t Xt is adapted B t B_t Bt i.e. X t X_t Xt is a function of B s , s ≤ t B_s, s\leq t Bsst.
(2) 以下两个积分是well defined
∫ 0 t a ( s , X s ) d s ∫ 0 t b ( s , X s ) d B s \int_0^t a(s, X_s)ds\\ \int_0^tb(s, X_s)dB_s 0ta(s,Xs)ds0tb(s,Xs)dBs
(3) X X X is a function of the underlying sample path and of a ( t , x ) a(t, x) a(t,x) and b ( t , x ) b(t, x) b(t,x).

定理(强解存在唯一性)
设初值为 X 0 X_0 X0,满足以下两个条件:
1. E [ X 0 2 ] < ∞ \mathbb{E}[X_0^2]<\infty E[X02]<.
2. X 0 X_0 X0 B t B_t Bt相互独立,对于任意的 x , y ∈ R x, y \in \mathbb{R} x,yR
a ( t , x ) , b ( t , x ) a(t, x), b(t, x) a(t,x),b(t,x)是连续的.
∣ a ( t , x ) − a ( t , y ) ∣ + ∣ b ( t , x ) − b ( t , y ) ∣ ≤ K ∣ x − y ∣ , ∃ K ∈ [ 0 , T ] |a(t, x)-a(t, y)|+|b(t, x)-b(t, y)|\leq K|x-y|, \exist K \in [0, T] a(t,x)a(t,y)+b(t,x)b(t,y)Kxy,K[0,T]. (Lipschitz Condition)
那么Ito-SDE有唯一的强解 X t ∈ [ 0 , T ] X_t \in [0, T] Xt[0,T].

线性SDE
X t = X 0 + ∫ 0 t ( c 1 X s + c 2 ) d s + ∫ 0 t ( σ 1 X s + σ 2 ) d B s X_t=X_0+\int_0^t(c_1X_s+c_2)ds+\int_0^t(\sigma_1X_s+\sigma_2)dB_s Xt=X0+0t(c1Xs+c2)ds+0t(σ1Xs+σ2)dBs
其中
a ( t , x ) = c 1 x + c 2 b ( t , x ) = σ 1 x + σ 2 a(t, x)=c_1x+c_2\\ b(t, x)=\sigma_1x+\sigma_2 a(t,x)=c1x+c2b(t,x)=σ1x+σ2
验证Lipschitz条件
∣ a ( t , x ) − a ( t , y ) ∣ + ∣ b ( t , x ) − b ( t , y ) ∣ = ∣ c 1 ∣ ∣ x − y ∣ + ∣ σ 1 ∣ ∣ x − y ∣ ≤ K ∣ x − y ∣ K ≥ ∣ c 1 ∣ + ∣ σ 1 ∣ |a(t, x)-a(t, y)|+|b(t, x)-b(t, y)|=|c_1||x-y|+|\sigma_1||x-y|\leq K|x-y|\\ K\geq |c_1|+|\sigma_1| a(t,x)a(t,y)+b(t,x)b(t,y)=c1xy+σ1xyKxyKc1+σ1

等价SDE

转换定理(Transformation Formula):假设Ito-SDE
d X t = a ( t , X t ) d t + b ( t , X t ) d B t dX_t=a(t, X_t)dt+b(t, X_t)dB_t dXt=a(t,Xt)dt+b(t,Xt)dBt
将Ito积分转为Stratonovich积分
∫ 0 T f ( t , X t ) ∘ d B t = ∫ 0 T f ( t , X t ) d B t + 1 2 ∫ 0 T b ( t , X t ) f x ( t , X t ) d t \int_0^Tf(t, X_t)\circ dB_t=\int_0^Tf(t, X_t)dB_t+\frac{1}{2}\int_0^Tb(t, X_t)f_x(t, X_t)dt 0Tf(t,Xt)dBt=0Tf(t,Xt)dBt+210Tb(t,Xt)fx(t,Xt)dt
例 1
设Ito-SDE
d X t = a ( t , X t ) d t + b ( t , X t ) d B t (1) dX_t=a(t, X_t)dt+b(t, X_t)dB_t \tag{1} dXt=a(t,Xt)dt+b(t,Xt)dBt(1)
转为Stratonovich-SDE
d X t = a ~ ( t , X t ) d t + b ~ ( t , X t ) ∘ d B t (2) dX_t=\widetilde{a}(t, X_t)dt+\widetilde{b}(t, X_t)\circ dB_t \tag{2} dXt=a (t,Xt)dt+b (t,Xt)dBt(2)
根据转换定理:
∫ 0 T f ( t , X t ) ∘ d B t = ∫ 0 T f ( t , X t ) d B t + 1 2 ∫ 0 T b ( t , X t ) f x ( t , X t ) d t \int_0^Tf(t, X_t)\circ dB_t=\int_0^Tf(t, X_t)dB_t+\frac{1}{2}\int_0^Tb(t, X_t)f_x(t, X_t)dt 0Tf(t,Xt)dBt=0Tf(t,Xt)dBt+210Tb(t,Xt)fx(t,Xt)dt
不妨令 f ( t , X t ) = b ( t , X t ) f(t, X_t)=b(t, X_t) f(t,Xt)=b(t,Xt),可以得到
b ( t , X t ) ∘ d B t = b ( t , X t ) d B t + 1 2 b ( t , X t ) b x ( t , X t ) d t b(t, X_t)\circ dB_t=b(t, X_t)dB_t+\frac{1}{2}b(t, X_t)b_x(t, X_t)dt b(t,Xt)dBt=b(t,Xt)dBt+21b(t,Xt)bx(t,Xt)dt
代入Ito-SDE形式
d X t = a ( t , X t ) d t + b ( t , X t ) d B t = a ( t , X t ) d t + b ( t , X t ) ∘ d B t − 1 2 b ( t , X t ) b x ( t , X t ) d t = ( a ( t , X t ) − 1 2 b ( t , X t ) b x ( t , X t ) ) ⏟ a ~ d t + b ( t , X t ) ⏟ b ~ ∘ d B t \begin{aligned} dX_t&=a(t, X_t)dt+b(t, X_t)dB_t \\ &=a(t, X_t)dt+b(t, X_t)\circ dB_t-\frac{1}{2}b(t, X_t)b_x(t, X_t)dt\\ &=\underbrace{(a(t, X_t)-\frac{1}{2}b(t, X_t)b_x(t, X_t))}_{\widetilde{a}}dt+\underbrace{b(t, X_t)}_{\widetilde{b}}\circ dB_t \end{aligned} dXt=a(t,Xt)dt+b(t,Xt)dBt=a(t,Xt)dt+b(t,Xt)dBt21b(t,Xt)bx(t,Xt)dt=a (a(t,Xt)21b(t,Xt)bx(t,Xt))dt+b b(t,Xt)dBt
可以得到
{ a ~ = a ( t , X t ) − 1 2 b ( t , X t ) b x ( t , X t ) b ~ = b ( t , X t ) \begin{cases} \widetilde{a}=a(t, X_t)-\frac{1}{2}b(t, X_t)b_x(t, X_t)\\ \widetilde{b}=b(t, X_t) \end{cases} {a =a(t,Xt)21b(t,Xt)bx(t,Xt)b =b(t,Xt)
方程 ( 1 ) (1) (1) ( 2 ) (2) (2)是等价SDE.

例 2
Ito-SDE
d X t = 1 2 f ( X t ) f ′ ( X t ) d t + f ( X t ) d B t dX_t=\frac{1}{2}f(X_t)f'(X_t)dt+f(X_t)dB_t dXt=21f(Xt)f(Xt)dt+f(Xt)dBt
可知
{ a ( t , x ) = 1 2 f ( X t ) f ′ ( X t ) b ( t , x ) = f ( X t ) \begin{cases} a(t, x)=\frac{1}{2}f(X_t)f'(X_t)\\ b(t, x)=f(X_t) \end{cases} {a(t,x)=21f(Xt)f(Xt)b(t,x)=f(Xt)
根据转换定理转为Stratonovich-SDE
{ a ~ ( t , x ) = 0 b ~ ( t , x ) = f ( X t ) \begin{cases} \widetilde{a}(t, x)=0\\ \widetilde{b}(t, x)=f(X_t) \end{cases} {a (t,x)=0b (t,x)=f(Xt)
等价SDE为
d X t = f ( X t ) ∘ d B t dX_t=f(X_t)\circ dB_t dXt=f(Xt)dBt
求解analogue:
d k ( t ) = f ( k ( t ) ) d c ( t ) dk(t)=f(k(t))dc(t) dk(t)=f(k(t))dc(t)
移项得到
∫ d l ( t ) f ( l ( t ) ) = d c ( t ) \int \frac{dl(t)}{f(l(t))}=dc(t) f(l(t))dl(t)=dc(t)
例 3
d X t = 1 2 n X t 2 n − 1 d t + X t n d B t dX_t=\frac{1}{2}nX_t^{2n-1}dt+X_t^ndB_t dXt=21nXt2n1dt+XtndBt
转为等价SDE
d X t = f ( X t ) ∘ d B t = X t n ∘ d B t dX_t=f(X_t)\circ dB_t=X_t^n\circ dB_t dXt=f(Xt)dBt=XtndBt
k ( t ) = X t , c ( t ) = B t k(t)=X_t, c(t)=B_t k(t)=Xt,c(t)=Bt,得到analogue-ODE:
d k ( t ) = k ( t ) n d c ( t ) dk(t)=k(t)^ndc(t) dk(t)=k(t)ndc(t)
在区间 [ 0 , t ] [0, t] [0,t]上解之得
∫ l ( 0 ) l ( t ) 1 k ( t ) n d k ( t ) = c ( t ) − c ( 0 ) 1 1 − n [ k ( t ) ] 1 − n − 1 1 − n [ k ( 0 ) ] 1 − n = c ( t ) − c ( 0 ) \int_{l(0)}^{l(t)}\frac{1}{k(t)^n}dk(t)=c(t)-c(0)\\ \frac{1}{1-n}[k(t)]^{1-n}-\frac{1}{1-n}[k(0)]^{1-n}=c(t)-c(0) l(0)l(t)k(t)n1dk(t)=c(t)c(0)1n1[k(t)]1n1n1[k(0)]1n=c(t)c(0)
X t = k ( t ) , B t = c ( t ) X_t=k(t), B_t=c(t) Xt=k(t),Bt=c(t),得到
X t 1 − n − X 0 1 − n = ( 1 − n ) B t X t = [ X 0 1 − n + ( 1 − n ) B t ] 1 1 − n X_t^{1-n}-X_0^{1-n}=(1-n)B_t\\ X_t=[X_0^{1-n}+(1-n)B_t]^{\frac{1}{1-n}} Xt1nX01n=(1n)BtXt=[X01n+(1n)Bt]1n1

参考资料

stochastic differential equation(SDE) part1 Jerry Xu

中立型随机微分方程(Neutral Stochastic Differential Equations, NSDEs) 和普通的随机微分方程 (Stochastic Differential Equations, SDEs) 是两种不同的数学模型,用于描述含有不确定性的动态系统的演化过程。 ### 普通随机微分方程的特点 普通随机微分方程用来建模受噪声影响的连续时间随机过程。这类方程一般形式如下: $$dX_t = a(X_t,t)\,dt + b(X_t,t)\,dB_t,$$ 这里 $a(\cdot,\cdot)$ 称为漂移系数,代表了确定性趋势;$b(\cdot,\cdot)$ 称为扩散系数,关联着不确定性或者波动率;$B_t$ 则表示布朗运动或者其他类型的随机扰动源。 ### 中立型随机微分方程的特点 中立型随机微分方程则是一种更复杂的随机微分方程类型,它不仅考虑到了当前状态和过去历史的影响,还包含了对未来变化速率的一种预测成分。NSDE的一般形式可能看起来像这样: $$d[X_t - g(X_{t-\tau})] = a(X_t,t)\,dt + b(X_t,t)\,dB_t,$$ 这里的 $g(\cdot)$ 函数引入了一个延迟项 $\tau > 0$, 这意味着方程中的某些部分取决于过去的值,并且这个依赖关系不是简单的线性滞后而是更加复杂的形式。 ### 主要区别 - **结构差异**:最显著的不同在于NSDE包含了一种“中立”的元素——即对未来的预期或调整,这使得它们能够更好地捕捉一些特定物理现象的本质特征。 - **应用领域**:由于其特殊性质,在金融工程、生物学等领域中,当需要考虑到记忆效应或其他非即时反馈机制时,NSDE往往比标准SDE更为适用。 - **求解难度**:理论上讲,解决NSDE的问题通常要比处理常规SDE更具挑战性,因为前者涉及到更多维数的状态空间以及更复杂的边界条件等。 ### 应用实例 在实际应用场景下,例如金融市场上的期权定价问题里,如果资产价格变动存在一定的惯性或者是受到之前走势的影响,则使用NSDE来构建相应的数学模型可能会得到更准确的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值