【SDE】随机微分方程(2)

前文链接

随机微分方程(1)

等价SDE

例 1
求解Ito-SDE
d X t = [ q f ( X t ) + 1 2 f ( X t ) f ′ ( X t ) ] d t + f ( X t ) d B t dX_t=[qf(X_t)+\frac{1}{2}f(X_t)f'(X_t)]dt+f(X_t)dB_t dXt=[qf(Xt)+21f(Xt)f(Xt)]dt+f(Xt)dBt
可以知道
{ a ( t , x ) = q f ( X t ) + 1 2 f ( X t ) f ′ ( X t ) b ( t , x ) = f ( X t ) \begin{cases} a(t, x)=qf(X_t)+\frac{1}{2}f(X_t)f'(X_t)\\ b(t, x)=f(X_t) \end{cases} {a(t,x)=qf(Xt)+21f(Xt)f(Xt)b(t,x)=f(Xt)
根据转换定理
{ a ~ ( t , x ) = a ( t , x ) − 1 2 b ( t , x ) b x ( t , x ) = q f ( X t ) b ~ ( t , x ) = f ( X t ) \begin{cases} \widetilde{a}(t, x)=a(t, x)-\frac{1}{2}b(t, x)b_x(t, x)=qf(X_t)\\ \widetilde{b}(t, x)=f(X_t) \end{cases} {a (t,x)=a(t,x)21b(t,x)bx(t,x)=qf(Xt)b (t,x)=f(Xt)
得到Stratonovich-SDE
d X t = q f ( X t ) d t + f ( X t ) ∘ d B t dX_t=qf(X_t)dt+f(X_t)\circ dB_t dXt=qf(Xt)dt+f(Xt)dBt
求解analogue在 [ 0 , t ] [0, t] [0,t]上积分:
d k ( t ) f ( k ( t ) ) = q d t + d c ( t ) ∫ k ( 0 ) k ( t ) d k ( t ) f ( k ( t ) ) = q t + c ( t ) − c ( 0 ) \frac{dk(t)}{f(k(t))}=qdt+dc(t)\\ \int_{k(0)}^{k(t)}\frac{dk(t)}{f(k(t))}=qt+c(t)-c(0) f(k(t))dk(t)=qdt+dc(t)k(0)k(t)f(k(t))dk(t)=qt+c(t)c(0)
d u f ( u ) \frac{du}{f(u)} f(u)du的原函数为 g ( u ) g(u) g(u),得到
g ( k ( t ) ) − g ( k ( 0 ) ) = q t + c ( t ) − c ( 0 ) g ( X t ) − g ( X 0 ) = q t + B ( t ) g(k(t))-g(k(0))=qt+c(t)-c(0)\\ g(X_t)-g(X_0)=qt+B(t) g(k(t))g(k(0))=qt+c(t)c(0)g(Xt)g(X0)=qt+B(t)
例 2
求解Ito-SDE
d X t = [ q ( X t + 1 ) + 1 2 ( X t + 1 ) ] d t + ( X t + 1 ) d B t , X 0 = 0 dX_t=[q(X_t+1)+\frac{1}{2}(X_t+1)]dt+(X_t+1)dB_t, X_0=0 dXt=[q(Xt+1)+21(Xt+1)]dt+(Xt+1)dBt,X0=0
f ( x ) = x + 1 f(x)=x+1 f(x)=x+1,可以得到
d X t = [ q f ( X t ) + 1 2 f ( X t ) f ′ ( X t ) ] d t + f ( X t ) d B t dX_t=[qf(X_t)+\frac{1}{2}f(X_t)f'(X_t)]dt+f(X_t)dB_t dXt=[qf(Xt)+21f(Xt)f(Xt)]dt+f(Xt)dBt
和例 1形式相同,求出 g ( u ) g(u) g(u)
g ( u ) = ∫ 1 1 + x d x = ln ⁡ ( 1 + x ) g(u)=\int \frac{1}{1+x}dx=\ln(1+x) g(u)=1+x1dx=ln(1+x)
得到
ln ⁡ ( X t + 1 ) = q t + B t X t = exp ⁡ ( q t + B t ) − 1 \ln(X_t+1)=qt+B_t\\ X_t=\exp(qt+B_t)-1 ln(Xt+1)=qt+BtXt=exp(qt+Bt)1

Ornstein-Uhlenbeck Process

O-U过程满足如下形式
X t = X 0 + c ∫ 0 t X s d s + σ ∫ 0 t d B s X_t=X_0+c\int_0^tX_sds+\sigma\int_0^tdB_s Xt=X0+c0tXsds+σ0tdBs
X 0 X_0 X0非随机.
微分形式
d X t = c X t + σ d B t (1) dX_t=cX_t+\sigma dB_t \tag{1} dXt=cXt+σdBt(1)
离散形式
X t + 1 − X t = c X t + σ ( B t + 1 − B t ) X_{t+1}-X_t=cX_t+\sigma(B_{t+1}-B_t) Xt+1Xt=cXt+σ(Bt+1Bt)
移项得到自回归模型
X t + 1 = ( c + 1 ) ⏟ ϕ X t + σ ( B t + 1 − B t ) ⏟ Z t ∼ N ( 0 , σ 2 ) = ϕ X t + Z t X_{t+1}=\underbrace{(c+1)}_{\phi}X_t+\underbrace{\sigma (B_{t+1}-B_t)}_{Z_t\sim \mathcal{N}(0, \sigma^2)}=\phi X_t+Z_t Xt+1=ϕ (c+1)Xt+ZtN(0,σ2) σ(Bt+1Bt)=ϕXt+Zt
考虑线性回归方程
y = β 0 + β 1 x + ε y=\beta_0+\beta_1x+\varepsilon y=β0+β1x+ε
求解方程 Y t = e − c t X t Y_t=e^{-ct}X_t Yt=ectXt,令 f ( t , x ) = e − c t x , f t ′ = − x c e − c t , f x ′ = e − c t , f x x ′ = 0 f(t, x)=e^{-ct}x, f'_t=-xce^{-ct}, f'_x=e^{-ct}, f'_{xx}=0 f(t,x)=ectx,ft=xcect,fx=ect,fxx=0
由伊藤公式得到
d Y t = d f ( t , X t ) = f t ′ d t + f x ′ d X t + 1 2 f x x ′ d X ( t ) d X ( t ) = − c X t e − c t d t + e − c t ( c X t d t + σ d B t ) = σ e − c t d B t (2) \begin{aligned} dY_t&=df(t, X_t)\\ &=f'_tdt+f'_xdX_t+\frac{1}{2}f'_{xx}dX(t)dX(t)\\ &=-cX_te^{-ct}dt+e^{-ct}(cX_tdt+\sigma dB_t) \\ &=\sigma e^{-ct}dB_t \end{aligned}\tag{2} dYt=df(t,Xt)=ftdt+fxdXt+21fxxdX(t)dX(t)=cXtectdt+ect(cXtdt+σdBt)=σectdBt(2)
可以发现 d Y t dY_t dYt中没有漂移项, Y t Y_t Yt是一个martingale.
证明: P t = e − c t P_t=e^{-ct} Pt=ect时方程可以求解
设方程 Y t = P t X t Y_t=P_tX_t Yt=PtXt,令 f ( t , x ) = P t x , f t ′ = P t ′ x , f x ′ = P t , f x x ′ ′ = 0 f(t, x)=P_tx, f'_t=P'_tx, f'_x=P_t, f''_{xx}=0 f(t,x)=Ptx,ft=Ptx,fx=Pt,fxx=0
d Y t = d f ( t , X t ) = P t ′ X t d t + P t d X t = P t ′ X t d t + P t ( c X t d t + σ d B t ) = ( P t ′ + c P t ) X t d t + P t σ d B t \begin{aligned} dY_t&=df(t, X_t)=P_t'X_tdt+P_tdX_t\\ &=P_t'X_tdt+P_t(cX_tdt+\sigma dB_t)\\ &=(P_t'+cP_t)X_tdt+P_t\sigma dB_t \end{aligned} dYt=df(t,Xt)=PtXtdt+PtdXt=PtXtdt+Pt(cXtdt+σdBt)=(Pt+cPt)Xtdt+PtσdBt
只有当漂移项为0时,方程可以求解,因此要求
P t ′ + c P t = 0 P'_t+cP_t=0 Pt+cPt=0
解得
P t = e − c t P_t=e^{-ct} Pt=ect
对方程 ( 2 ) (2) (2)两边进行积分
Y t − Y 0 = ∫ 0 t σ e − c s d B s Y_t-Y_0=\int_0^t\sigma e^{-cs}dB_s YtY0=0tσecsdBs
代入 Y t = e − c t X t Y_t=e^{-ct}X_t Yt=ectXt
e − c t X t = X 0 + ∫ 0 t σ e − c s d B s X t = e c t X 0 + σ e c t ∫ 0 t e − c s d B s e^{-ct}X_t=X_0+\int_0^t\sigma e^{-cs}dB_s\\ X_t=e^{ct}X_0+\sigma e^{ct}\int_0^t e^{-cs}dB_s ectXt=X0+0tσecsdBsXt=ectX0+σect0tecsdBs

Ito Process Distribution

伊藤过程的分布
根据
I ( t ) = ∫ 0 t Δ ( u ) d B ( u ) E [ I ( t ) ] = E [ I ( t ) ∣ F ( 0 ) ] = I ( 0 ) = 0 E [ I 2 ( t ) ] = ∫ 0 t E [ Δ 2 ( u ) ] d u \begin{aligned} &I(t)=\int_0^t\Delta(u)dB(u)\\ &\mathbb{E}[I(t)]=\mathbb{E}[I(t)\mid \mathcal{F}(0)]=I(0)=0\\ &\mathbb{E}[I^2(t)]=\int_0^t\mathbb{E}[\Delta^2(u)]du \end{aligned} I(t)=0tΔ(u)dB(u)E[I(t)]=E[I(t)F(0)]=I(0)=0E[I2(t)]=0tE[Δ2(u)]du
得到
I ( t ) ∼ N ( 0 , ∫ 0 t E [ Δ 2 ( u ) ] d u ) I(t)\sim \mathcal{N}(0, \int_0^t\mathbb{E}[\Delta^2(u)]du) I(t)N(0,0tE[Δ2(u)]du)

一般线性SDE

一般线性SDE方程
d X ( u ) = ( a ( u ) + b ( u ) X ( u ) ) d u + ( γ ( u ) + σ ( u ) X ( u ) ) d W ( u ) dX(u)=(a(u)+b(u)X(u))du+(\gamma(u)+\sigma(u)X(u))dW(u) dX(u)=(a(u)+b(u)X(u))du+(γ(u)+σ(u)X(u))dW(u)
其中 a ( u ) , b ( u ) , γ ( u ) , σ ( u ) a(u), b(u), \gamma(u), \sigma(u) a(u),b(u),γ(u),σ(u) are adapted to F ( u ) , u ≥ 0 \mathcal{F}(u), u\geq 0 F(u),u0.

Z ( u ) = exp ⁡ { ∫ t u σ ( v ) d W ( v ) + ∫ t u ( b ( v ) − 1 2 σ 2 ( v ) ) d v ⏟ Q ( u ) } Y ( u ) = x + ∫ t u a ( v ) − σ ( v ) γ ( v ) Z ( v ) d v + ∫ t u γ ( v ) Z ( v ) d W ( v ) Z(u)=\exp\{\underbrace{\int_t^u\sigma(v)dW(v)+\int_t^u(b(v)-\frac{1}{2}\sigma^2(v))dv}_{Q(u)}\} \\ Y(u)=x+\int_t^u\frac{a(v)-\sigma(v)\gamma(v)}{Z(v)}dv+\int_t^u\frac{\gamma(v)}{Z(v)}dW(v) Z(u)=exp{Q(u) tuσ(v)dW(v)+tu(b(v)21σ2(v))dv}Y(u)=x+tuZ(v)a(v)σ(v)γ(v)dv+tuZ(v)γ(v)dW(v)
初值 Z ( t ) = 1 Z(t)=1 Z(t)=1.
d Z ( u ) = d e Q ( u ) dZ(u)=de^{Q(u)} dZ(u)=deQ(u) Q ( u ) Q(u) Q(u)是一个Ito Process,令 f ( t , x ) = e x , f t = 0 , f x = e x , f x x = e x f(t, x)=e^x, f_t=0, f_x=e^x, f_{xx}=e^x f(t,x)=ex,ft=0,fx=ex,fxx=ex
d Z ( u ) = d e Q ( u ) = d f ( t , Q ( u ) ) = e Q ( u ) d Q ( u ) + 1 2 e Q ( u ) d Q ( u ) d Q ( u ) = Z ( u ) [ σ ( u ) d W ( u ) + ( b ( u ) − 1 2 σ 2 ( u ) ) d u + 1 2 Z ( u ) σ 2 ( u ) d u ] = Z ( u ) [ σ ( u ) d W ( u ) + b ( u ) d u ] d Y ( u ) = a ( u ) − σ ( u ) γ ( u ) Z ( u ) d u + γ ( u ) Z ( u ) d W ( u ) \begin{aligned} dZ(u)&=de^{Q(u)}=df(t, Q(u))\\ &=e^{Q(u)}dQ(u)+\frac{1}{2}e^{Q(u)}dQ(u)dQ(u) \\ &=Z(u)[\sigma(u)dW(u)+(b(u)-\frac{1}{2}\sigma^2(u))du+\frac{1}{2}Z(u)\sigma^2(u)du]\\ &=Z(u)[\sigma(u)dW(u)+b(u)du]\\ dY(u)&=\frac{a(u)-\sigma(u)\gamma(u)}{Z(u)}du+\frac{\gamma(u)}{Z(u)}dW(u) \end{aligned} dZ(u)dY(u)=deQ(u)=df(t,Q(u))=eQ(u)dQ(u)+21eQ(u)dQ(u)dQ(u)=Z(u)[σ(u)dW(u)+(b(u)21σ2(u))du+21Z(u)σ2(u)du]=Z(u)[σ(u)dW(u)+b(u)du]=Z(u)a(u)σ(u)γ(u)du+Z(u)γ(u)dW(u)
证明 X ( u ) = Y ( u ) Z ( u ) X(u)=Y(u)Z(u) X(u)=Y(u)Z(u)
d X ( u ) = d [ Y ( u ) Z ( u ) ] = Z ( u ) d Y ( u ) + Y ( u ) d Z ( u ) + d Y ( u ) d Z ( u ) = ( a ( u ) − σ ( u ) γ ( u ) ) d u + γ ( u ) d W ( u ) + Y ( u ) Z ( u ) ⏟ X ( u ) [ b ( u ) d u + σ ( u ) d W ( u ) ] + γ ( u ) σ ( u ) d u = [ a ( u ) − σ ( u ) γ ( u ) + X ( u ) b ( u ) + γ ( u ) σ ( u ) ] d u + [ γ ( u ) + σ ( u ) X ( u ) ] d W ( u ) = [ a ( u ) + X ( u ) b ( u ) ] d u + [ γ ( u ) + σ ( u ) X ( u ) ] d W ( u ) \begin{aligned} dX(u)&=d[Y(u)Z(u)]\\ &=Z(u)dY(u)+Y(u)dZ(u)+dY(u)dZ(u)\\ &=(a(u)-\sigma(u)\gamma(u))du+\gamma(u)dW(u)+\underbrace{Y(u)Z(u)}_{X(u)}[b(u)du+\sigma(u)dW(u)]+\gamma(u)\sigma(u)du\\ &=[a(u)-\sigma(u)\gamma(u)+X(u)b(u)+\gamma(u)\sigma(u)]du+[\gamma(u)+\sigma(u)X(u)]dW(u)\\ &=[a(u)+X(u)b(u)]du+[\gamma(u)+\sigma(u)X(u)]dW(u) \end{aligned} dX(u)=d[Y(u)Z(u)]=Z(u)dY(u)+Y(u)dZ(u)+dY(u)dZ(u)=(a(u)σ(u)γ(u))du+γ(u)dW(u)+X(u) Y(u)Z(u)[b(u)du+σ(u)dW(u)]+γ(u)σ(u)du=[a(u)σ(u)γ(u)+X(u)b(u)+γ(u)σ(u)]du+[γ(u)+σ(u)X(u)]dW(u)=[a(u)+X(u)b(u)]du+[γ(u)+σ(u)X(u)]dW(u)
证明唯一解,使用Lipchitz条件验证
d X ( t ) = [ a ( t ) + b ( t ) X ( t ) ] ⏟ m ( t , x ) : = a ( t ) + b ( t ) x d t + [ γ ( t ) + σ ( t ) X ( t ) ] ⏟ n ( t , x ) : = γ ( t ) + σ ( t ) x d W ( t ) dX(t)=\underbrace{[a(t)+b(t)X(t)]}_{m(t, x):=a(t)+b(t)x}dt+\underbrace{[\gamma(t)+\sigma(t)X(t)]}_{n(t, x):=\gamma(t)+\sigma(t)x}dW(t) dX(t)=m(t,x):=a(t)+b(t)x [a(t)+b(t)X(t)]dt+n(t,x):=γ(t)+σ(t)x [γ(t)+σ(t)X(t)]dW(t)
由Lipchitz条件
∣ m ( t , x ) − m ( t , y ) ∣ + ∣ n ( t , x ) − n ( t , y ) ∣ ≤ K ∣ x − y ∣ K ≥ ∣ b ( t ) ∣ + ∣ σ ( t ) ∣ |m(t, x)-m(t, y)|+|n(t, x)-n(t, y)|\leq K|x-y|\\ K\geq |b(t)|+|\sigma(t)| m(t,x)m(t,y)+n(t,x)n(t,y)KxyKb(t)+σ(t)
因为 ∣ b ( t ) ∣ , ∣ σ ( t ) ∣ |b(t)|, |\sigma(t)| b(t),σ(t) [ 0 , t ] [0, t] [0,t]上是有界的,所以Lipchitz条件是满足的.

参考资料

SDE part2 Jerry Xu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值