【FinE】Poisson Process(2)

前文链接

Poisson Process(1)

Compensated Poisson Process

补偿泊松过程 M ( t ) M(t) M(t)表达式如下
M ( t ) = N ( t ) − λ t M(t)=N(t)-\lambda t M(t)=N(t)λt
M ( t ) M(t) M(t) is a Martingale.
Poisson Process的性质为
E [ N ( t ) ∣ F ( 0 ) ] = E [ N ( t ) ] = λ t ≠ N ( 0 ) \mathbb{E}[N(t)\mid \mathcal{F}(0)]=\mathbb{E}[N(t)]=\lambda t\neq N(0) E[N(t)F(0)]=E[N(t)]=λt=N(0)
为了构造一个鞅过程,需要加入补偿项 λ t \lambda t λt.
证明 M ( t ) M(t) M(t)是鞅过程.
s ≤ t s\leq t st
E [ M ( t ) ∣ F ( s ) ] = E [ N ( t ) − λ t ∣ F ( s ) ] = E [ N ( t ) ∣ F ( s ) ] − λ t = E [ N ( t ) − N ( s ) + N ( s ) ∣ F ( s ) ] − λ t = E [ N ( t ) − N ( s ) ∣ F ( s ) ] + E [ N ( s ) ∣ F ( s ) ] − λ t = λ ( t − s ) + N ( s ) − λ t = N ( s ) − λ s = M ( s ) \begin{aligned} \mathbb{E}[M(t)\mid \mathcal{F}(s)]&=\mathbb{E}[N(t)-\lambda t\mid \mathcal{F}(s)]=\mathbb{E}[N(t)\mid \mathcal{F}(s)]-\lambda t \\ &=\mathbb{E}[N(t)-N(s)+N(s)\mid \mathcal{F}(s)]-\lambda t\\ &=\mathbb{E}[N(t)-N(s)\mid \mathcal{F}(s)]+\mathbb{E}[N(s)\mid \mathcal{F}(s)]-\lambda t\\ &=\lambda(t-s)+N(s)-\lambda t\\ &=N(s)-\lambda s\\ &=M(s) \end{aligned} E[M(t)F(s)]=E[N(t)λtF(s)]=E[N(t)F(s)]λt=E[N(t)N(s)+N(s)F(s)]λt=E[N(t)N(s)F(s)]+E[N(s)F(s)]λt=λ(ts)+N(s)λt=N(s)λs=M(s)
M ( t ) M(t) M(t)是一个鞅过程.

Compound Poisson Process

Q ( t ) = ∑ i = 1 N ( t ) Y i Q(t)=\sum\limits_{i=1}^{N(t)} Y_i Q(t)=i=1N(t)Yi N ( t ) N(t) N(t)是一个强度参数为 λ \lambda λ的Poisson Process,令 Y 1 , Y 2 , … Y_1, Y_2, \dots Y1,Y2, 为一个i.i.d的序列,均值 E Y i = β \mathbb{E}Y_i=\beta EYi=β. 并且 { Y i } i = 1 ∞ \{Y_i\}_{i=1}^{\infty} {Yi}i=1 N ( t ) N(t) N(t)相独立.
计算数学期望
∵ E [ Q ( t ) ∣ N ( t ) = k ] = k β \because\mathbb{E}[Q(t)\mid N(t)=k]=k\beta E[Q(t)N(t)=k]=kβ
由期望迭代性质
E [ E [ Q ( t ) ∣ N ( t ) ] ] = E [ Q ( t ) ] = ∑ k = 0 ∞ k β P ( N ( t ) = k ) = ∑ k = 1 ∞ k β ( λ t ) k k ! e − λ t = ∑ k = 1 ∞ β ( λ t ) k ( k − 1 ) ! e − λ t = β λ t ∑ k = 1 ∞ ( λ t ) l l ! e − λ t ⏟ p d f : P o i s s o n ( λ t ) = β λ t \begin{aligned} \mathbb{E}[\mathbb{E}[Q(t)\mid N(t)]]&=\mathbb{E}[Q(t)]=\sum_{k=0}^\infty k\beta\mathbb{P}(N(t)=k)\\ &=\sum_{k=1}^\infty k\beta\frac{(\lambda t)^k}{k!}e^{-\lambda t}\\ &=\sum_{k=1}^\infty \beta\frac{(\lambda t)^k}{(k-1)!}e^{-\lambda t}\\ &=\beta\lambda t\underbrace{\sum_{k=1}^\infty\frac{(\lambda t)^l}{l!}e^{-\lambda t}}_{pdf:Poisson(\lambda t)}\\ &=\beta\lambda t \end{aligned} E[E[Q(t)N(t)]]=E[Q(t)]=k=0kβP(N(t)=k)=k=1kβk!(λt)keλt=k=1β(k1)!(λt)keλt=βλtpdf:Poisson(λt) k=1l!(λt)leλt=βλt
直观意义上, N ( t ) N(t) N(t)表示跳跃的次数,期望跳跃次数为 λ t \lambda t λt Y i Y_i Yi表示每次跳跃的距离,期望为 β \beta β单位长度,总距离期望为 λ t β \lambda t\beta λtβ.

性质:设计补偿过程 Q ( t ) − β λ t Q(t)-\beta\lambda t Q(t)βλt是一个martingale.
证明
E [ Q ( t ) − β λ t ∣ F ( s ) ] = E [ Q ( t ) − Q ( s ) ∣ F ( s ) ] + E [ Q ( s ) ∣ F ( s ) ] − β λ t \mathbb{E}[Q(t)-\beta\lambda t\mid \mathcal{F}(s)]=\mathbb{E}[Q(t)-Q(s)\mid\mathcal{F}(s)]+\mathbb{E}[Q(s)\mid \mathcal{F}(s)]-\beta\lambda t E[Q(t)βλtF(s)]=E[Q(t)Q(s)F(s)]+E[Q(s)F(s)]βλt
根据定义
∵ E [ Q ( t ) − Q ( s ) ∣ F ( s ) ] = ∑ i = 1 N ( t ) Y i − ∑ i = 1 N ( s ) Y i = ∑ N ( s ) + 1 N ( t ) Y i ∣ F ( s ) ∴ E [ Q ( t ) − β λ t ∣ F ( s ) ] = E [ Q ( t ) − Q ( s ) ] + Q ( s ) − β λ t = β λ t − β λ s + Q ( s ) − β λ t = Q ( s ) − β λ s \begin{aligned} &\because\mathbb{E}[Q(t)-Q(s)\mid\mathcal{F}(s)]=\sum_{i=1}^{N(t)}Y_i-\sum_{i=1}^{N(s)}Y_i=\sum_{N(s)+1}^{N(t)}Y_i \Big | \mathcal{F}(s)\\ &\therefore \mathbb{E}[Q(t)-\beta\lambda t\mid\mathcal{F}(s)]=\mathbb{E}[Q(t)-Q(s)]+Q(s)-\beta\lambda t\\ &=\beta\lambda t-\beta\lambda s+Q(s)-\beta\lambda t \\ &=Q(s)-\beta\lambda s \end{aligned} E[Q(t)Q(s)F(s)]=i=1N(t)Yii=1N(s)Yi=N(s)+1N(t)YiF(s)E[Q(t)βλtF(s)]=E[Q(t)Q(s)]+Q(s)βλt=βλtβλs+Q(s)βλt=Q(s)βλs
Q ( t ) − β λ t Q(t)-\beta\lambda t Q(t)βλt是鞅过程.

定理 1:令 Q ( t ) Q(t) Q(t)为一个compound Poisson Process 并且 0 = t 0 < t 1 < … , t n 0=t_0<t_1<\dots, t_n 0=t0<t1<,tn为给定时间节点,那么增量
Q ( t 1 ) − Q ( t 0 ) , Q ( t 2 ) − Q ( t 1 ) , … , Q ( t n ) − Q ( t n − 1 ) Q(t_1)-Q(t_0), Q(t_2)-Q(t_1), \dots, Q(t_n)-Q(t_{n-1}) Q(t1)Q(t0),Q(t2)Q(t1),,Q(tn)Q(tn1)
为平稳且独立的, Q ( t j ) − Q ( t j − 1 ) Q(t_j)-Q(t_{j-1}) Q(tj)Q(tj1)具有和 Q ( t j − t j − 1 ) Q(t_j-t_{j-1}) Q(tjtj1)相同的分布.
定理 2(分解定理):令 y 1 , y 2 , … , y m y_1, y_2, \dots, y_m y1,y2,,ym为非零有限集合,并且 P ( y 1 ) , P ( y 2 ) , … , P ( y m ) P(y_1), P(y_2), \dots, P(y_m) P(y1),P(y2),,P(ym)是和为1的正数.
Y 1 , Y 2 , … , Y n Y_1, Y_2, \dots, Y_n Y1,Y2,,Yn为i.i.d的随机变量序列,并且 P { Y i = y m } = P ( y m ) , m = 1 , 2 , … , M \mathbb{P}\{Y_i=y_m\}=P(y_m), m=1, 2, \dots, M P{Yi=ym}=P(ym)m=1,2,,M N ( t ) N(t) N(t)为一个Poisson Process并且定义Compound Poisson Process
Q ( t ) = ∑ i = 1 N ( t ) Y i Q(t)=\sum_{i=1}^{N(t)} Y_i Q(t)=i=1N(t)Yi
对于 m = 1 , 2 , … , M m=1, 2, \dots, M m=1,2,,M,令 N m ( t ) N_m(t) Nm(t)表示 Q Q Q过程中跳跃的距离时 y m y_m ym的次数,那么
N ( t ) = ∑ m = 1 M N m ( t ) Q ( t ) = ∑ m = 1 M y m N m ( t ) N(t)=\sum_{m=1}^MN_m(t) \\ Q(t)=\sum_{m=1}^My_mN_m(t) N(t)=m=1MNm(t)Q(t)=m=1MymNm(t)
过程 N 1 , N 2 , … , N m N_1, N_2, \dots, N_m N1,N2,,Nm是独立的Poisson Process,每个过程的强度参数为 λ p ( y m ) \lambda p(y_m) λp(ym).
解析:该定理从另一个角度观察了Compound Poisson Process,分拆了强度参数,可以计算出
∑ i = 1 M λ p ( y m ) = λ ∑ i = 1 m p ( y m ) = λ \sum_{i=1}^M\lambda p(y_m)=\lambda\sum_{i=1}^mp(y_m)=\lambda i=1Mλp(ym)=λi=1mp(ym)=λ

参考资料

Poisson Process part 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值