【TS】GARCH模型(1)

波动率的特征

波动率无法直接观测,但是可以从资产收益率中观测到一些特征:

  • 波动率聚集(volatility cluster), 在某个特定时间段上波动率高,但是在其他时间段上波动率小
  • 波动率以连续时间方式变化,几乎不存在跳跃的现象
  • 波动率不会发散到无穷,在一个固定范围内变化
  • 波动率对价格大幅上升和大幅下降的反应是不同的,即存在杠杆效应(leverage effect),如EGARCHTGARCH模型就是为了刻画波动率正负资产收益率的不对称性而提出的

基本模型

r t r_t rt表示资产在时刻 t t t的对数收益率,研究结果表明,对数收益率序列是前后不相关的,但不是独立的,考虑在给定 F t − 1 F_{t-1} Ft1(filteration)时的条件均值和条件方差
{ μ t = E [ r t ∣ F t − 1 ] σ t 2 = V a r ( r t ∣ F t − 1 ) = E [ ( r t − μ t ) 2 ∣ F t − 1 ] \begin{cases} \mu_t=E[r_t\mid F_{t-1}]\\ \sigma_t^2=Var(r_t\mid F_{t-1})=E[(r_t-\mu_t)^2\mid F_{t-1}] \end{cases} {μt=E[rtFt1]σt2=Var(rtFt1)=E[(rtμt)2Ft1]
设置 r t r_t rt服从一个简单的ARMA(p, q)模型, r t = μ t + a t r_t=\mu_t+a_t rt=μt+at,其中 μ t \mu_t μt由以下方程给出
μ t = ϕ 0 + ∑ i = 1 p ϕ i r t − i − ∑ j = 1 q θ j a t − j \mu_t=\phi_0+\sum_{i=1}^p\phi_ir_{t-i}-\sum_{j=1}^q\theta_ja_{t-j} μt=ϕ0+i=1pϕirtij=1qθjatj
可以得到条件异方差模型为
σ t 2 = V a r ( r t ∣ F t − 1 ) = V a r ( a t ∣ F t − 1 ) \sigma_t^2=Var(r_t\mid F_{t-1})=Var(a_t\mid F_{t-1}) σt2=Var(rtFt1)=Var(atFt1)

条件异方差模型可以分为两类:第一类用确定的函数表示 σ t 2 \sigma_t^2 σt2,即GARCH模型;第二类用随机方程描述 σ t 2 \sigma_t^2 σt2,即SV模型

使用Ljung-Box检验序列是否存在异方差

da = read.table('data/m-intcsp7309.txt', header=T)
head(da)

intc = log(da$intc+1)
rtn = ts(intc, frequency = 12, start=c(1973, 1))
plot(rtn, type='l', xlab='year', ylab='ln-rtn') # 绘制时间序列

# 对序列均值进行t检验
t.test(intc)

# 进行Ljung-Box检验
Box.test(intc, lag=12, type='Ljung') # Ljung-Box检验

# plot
par(mfcol=c(2, 1))
acf(intc, lag=24)
acf(abs(intc), lag=24)
Box.test(abs(intc), lag=12, type='Ljung') # 更显著

ARCH

Engle(1982)提出了ARCH模型,模型的基本思想就是:

  1. 资产收益率的扰动序列 a t a_t at是前后不相关的,但不是独立的
  2. a t a_t at的不独立性可以使用其滞后值得简单二次函数描述,即ARCH(m)模型设定
    a t = σ t ε t σ t 2 = α 0 + α 1 a t − 1 2 + ⋯ + α m a t − m 2 a_t=\sigma_t\varepsilon_t\\ \sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2+\dots+\alpha_ma_{t-m}^2 at=σtεtσt2=α0+α1at12++αmatm2
    其中 { ε t } \{\varepsilon_t\} {εt}是均值为0方差为1的独立同分布(i.i.d)的随机变量序列,其中 a 0 > 0 , a i ≥ 0 a_0>0, a_i\geq 0 a0>0,ai0,系数 α i \alpha_i αi必须满足标准正态分布或者学生 t t t分布或者广义误差分布(GED),从模型结构上来看,较大的过去的平方扰动 a t − i 2 a_{t-i}^2 ati2会导致较大的条件方差 σ t 2 \sigma_t^2 σt2,从而使得 a t a_t at倾向于取绝对值较大的系数,这种结构与波动率聚集的现象一致.

ARCH模型的性质

ARCH(1)模型如下
a t = σ t ε t σ t 2 = α 0 + α 1 a t − 1 2 a_t=\sigma_t\varepsilon_t\\ \sigma_t^2=\alpha_0+\alpha_1a_{t-1}^2 at=σtεtσt2=α0+α1at12
计算出 a t a_t at的无条件均值为 E [ a t ] = E [ a t ∣ F t − 1 ] = E [ σ t E [ ε t ] ] = 0 E[a_t]=E[a_t\mid F_{t-1}]=E[\sigma_tE[\varepsilon_t]]=0 E[at]=E[atFt1]=E[σtE[εt]]=0.
计算无条件方差为
V a r ( a t ) = E ( a t 2 ) = E [ E ( a t 2 ∣ F t − 1 ) ] = α 0 + α 1 E ( a t − 1 2 ) Var(a_t)=E(a_t^2)=E[E(a_t^2\mid F_{t-1})]=\alpha_0+\alpha_1E(a_{t-1}^2) Var(at)=E(at2)=E[E(at2Ft1)]=α0+α1E(at12)
为了研究 a t a_t at的尾部性质,要求 a t a_t at的四阶矩是有限的,当 ε t \varepsilon_t εt服从正态分布的条件下可以得到
E [ a t 4 ] = E [ E [ a t 4 ∣ F t − 1 ] ] = 3 [ E ( a t 2 ∣ F t − 1 ) ] 2 = 3 ( α 0 + α 1 a t − 1 2 ) 2 E[a_t^4]=E[E[a_t^4\mid F_{t-1}]]=3[E(a_t^2\mid F_{t-1})]^2=3(\alpha_0+\alpha_1a_{t-1}^2)^2 E[at4]=E[E[at4Ft1]]=3[E(at2Ft1)]2=3(α0+α1at12)2
设置 a t a_t at的四阶矩为平稳,可以计算出峰度(kurtosis)为
E ( a t 4 ) [ V a r ( a t ) ] 2 = 3 α 0 2 ( 1 + α 1 ) ( 1 − α 1 ) ( 1 − 3 α 1 2 ) × ( 1 − α 1 ) 2 α 0 2 = 3 1 − α 1 2 1 − 3 α 1 2 > 3 \frac{E(a_t^4)}{[Var(a_t)]^2}=3\frac{\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)}\times\frac{(1-\alpha_1)^2}{\alpha_0^2}=3\frac{1-\alpha_1^2}{1-3\alpha_1^2}>3 [Var(at)]2E(at4)=3(1α1)(13α12)α02(1+α1)×α02(1α1)2=313α121α12>3
可以发现条件高斯ARCH(1)的模型扰动 a t a_t at比高斯白噪声序列更容易出现异常值.
模型中 α i ≥ 0 \alpha_i\geq 0 αi0的假设可以放宽,该条件保证对于所有的 t t t,条件方差 σ t 2 \sigma_t^2 σt2为正值,一种可行的取正值的方式为
{ a t = σ t ε t σ t 2 = α 0 + A m , t − 1 ′ Ω A m , t − 1 \begin{cases} a_t=\sigma_t\varepsilon_t\\ \sigma_t^2=\alpha_0+A_{m, t-1}'\Omega A_{m, t-1} \end{cases} {at=σtεtσt2=α0+Am,t1ΩAm,t1
其中 Ω \Omega Ω是一个 m × m m\times m m×m的非负定矩阵

Demo: specify conditional variance model for exchange rates

读取汇率数据,图像如下

%% load data
load Data_MarkPound.mat
y=Data;
T=length(y);

figure
plot(y)
h=gca;
h.XTick = [1 659 1318 1975];
h.XTickLabel = {'Jan 1984','Jan 1986','Jan 1988','Jan 1992'};
ylabel 'Exchange Rate';
title 'Deutschmark/British Pound Foreign Exchange Rate';

exchange rate
计算回报率序列,图像显示如下

%%
r = price2ret(y); % 计算对数收益率
r2=tick2ret(y);

figure;
plot(2:T, r);
h=gca;
h.XTick = [1 659 1318 1975];
h.XTickLabel = {'Jan 1984','Jan 1986','Jan 1988','Jan 1992'};
ylabel 'Exchange Rate Returns';
title 'Deutschmark/British Pound Foreign Exchange Rate Returns';

logrets
从图像中可以发现收益率序列存在波动性聚集的特征,即存在条件异方差性(conditional heteroscedasticity). 计算自相关函数和偏自相关函数图像如下

%% 在百分制数值状态下观测
r = 100 * r;
figure;
subplot(2, 1, 1);
autocorr(r); % 计算自相关函数
subplot(2, 1, 2);
parcorr(r); % 计算偏自相关函数

acfpacf
进行Ljung-Box Q-test结果如下

[h, p]=lbqtest(r, 'Lags', [5, 10, 15])

ans
从p值可以得出,ACFPACF没有表现出显著的自相关性,因此序列不需要建立条件均值模型.

检测条件异方差

对收益率序列进行中心化处理后,对序列平方进行ACFPACF检测

%% conditional heteroscedasticity
subplot(2, 1, 1);
autocorr((r-mean(r)).^2);
subplot(2, 1, 2);
parcorr((r-mean(r)).^2);

acfpacf从图中发现存在 k k k阶截尾的特征,执行Engles’s ARCH检测,设置 k = 2 k=2 k=2

[h, p]=archtest(r-mean(r), 'Lags', 2);

从检验结果可以发现,squared returns表现除了显著的自相关性,即GARCH model with lagged variances and lagged squared innovations会更加适合该序列. Engle’s ARCH检测结果拒绝了零假设(h=1),支持ARCH(2)模型等效于GARCH(1, 1)模型.

GARCH(1, 1)模型

基于自相关性和条件异方差,设置带均值偏移(mean offset)的GARCH(1, 1)模型
y t = μ + ε t y_t=\mu+\varepsilon_t yt=μ+εt
其中 ε t = σ t z t \varepsilon_t=\sigma_tz_t εt=σtzt
σ t 2 = κ + γ 1 σ t − 1 2 + α 1 ε t − 1 2 \sigma_t^2=\kappa+\gamma_1\sigma_{t-1}^2+\alpha_1\varepsilon_{t-1}^2 σt2=κ+γ1σt12+α1εt12

M = garch('Offset', NaN, 'GARCHLags', 1, 'ARCHLags', 1);

Demo: Specify Conditional Mean and Variance Models

读入NASDAQ数据

load Data_EquityIdx
nasdaq = DataTable.NASDAQ;
r = 100*price2ret(nasdaq);
T = length(r);

figure
plot(r)
xlim([0 T])
title('NASDAQ Daily Returns')

ts
检测自相关性

%%
figure
subplot(2, 1, 1)
autocorr(r)
subplot(2, 1, 2)
parcorr(r)

acf
进行Ljung-Box检验

[h, p]=lbqtest(r, 'Lags', 5)

拒绝了null hypothesis,表示存在序列自相关
检测序列是否存在条件异方差

%%
figure
subplot(2, 1, 1);
autocorr((r-mean(r)).^2);
subplot(2, 1, 2);
parcorr((r-mean(r)).^2);

ARCH
Engle’s ARCH检测是否存在条件异方差

[h, p]=archtest(r-mean(r), 'lags', 2)

检验结果为接受备择假设,即存在条件异方差

设置条件均值和方差模型

设置AR(1)表示NASDAQ收益率序列的条件均值,GARCH(1, 1)表示条件方差
r t = c + ϕ 1 r t − 1 + ε t r_t=c+\phi_1r_{t-1}+\varepsilon_t rt=c+ϕ1rt1+εt
其中 ε t = σ t z t \varepsilon_t=\sigma_tz_t εt=σtzt
σ t 2 = κ + γ 1 σ t − 1 2 + α 1 ε t − 1 2 \sigma_t^2=\kappa+\gamma_1\sigma_{t-1}^2+\alpha_1\varepsilon_{t-1}^2 σt2=κ+γ1σt12+α1εt12

M=arima('ARLags', 1, 'Variance', garch(1, 1))

参考资料

金融数据分析导论 基于R语言
Specify Conditional Variance Model For Exchange Rates

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值