导航
合成运算
一个重要的模糊关系算子为composition
,用在关系与关系(relation-relation
)的合成或者集合与关系(set-relation
)的合成.
最大-最小合成(max-min operation
)最为常用.
如果
P
P
P和
Q
Q
Q分别为定义于
X
×
Y
X\times Y
X×Y以及
Y
×
Z
Y\times Z
Y×Z上的两个确定关系,由合成运算,将
P
P
P以及
Q
Q
Q转换为定义在
X
×
Z
X\times Z
X×Z上的关系
R
R
R.
R
(
X
×
Z
)
=
P
(
X
×
Y
)
∘
Q
(
Y
×
Z
)
=
{
(
x
,
z
)
∣
∃
(
x
,
y
)
∈
P
,
(
y
,
z
)
∈
Q
}
\begin{aligned} &R(X\times Z)\\ &=P(X\times Y)\circ Q(Y\times Z)\\ &=\{(x, z)\mid \exist (x, y)\in P, (y, z)\in Q \} \end{aligned}
R(X×Z)=P(X×Y)∘Q(Y×Z)={(x,z)∣∃(x,y)∈P,(y,z)∈Q}
max-min
合成运算子为
μ
R
(
x
,
z
)
=
∨
y
∈
Y
(
μ
P
(
x
,
y
)
∧
μ
Q
(
y
,
z
)
)
=
max
y
∈
Y
[
min
(
μ
P
(
x
,
y
)
,
μ
Q
(
y
,
z
)
)
]
\begin{aligned} \mu_R(x, z)&=\vee_{y\in Y}(\mu_P(x, y)\wedge \mu_Q(y, z))\\ &=\max_{y\in Y}[\min(\mu_P(x, y), \mu_Q(y, z))] \end{aligned}
μR(x,z)=∨y∈Y(μP(x,y)∧μQ(y,z))=y∈Ymax[min(μP(x,y),μQ(y,z))]
模糊规则
语义式变量组成元素有5个
(
x
,
T
(
x
)
,
U
,
G
,
M
)
(x, T(x), U, G, M)
(x,T(x),U,G,M).
-
x
x
x 是变量的名称
-
T
(
x
)
T(x)
T(x)是
x
x
x的措词集(
term set
),即形容 x x x的语义子句所构成的集合 -
U
U
U是变量
x
x
x的语义值(
linguistic value
) -
G
G
G是产生
x
x
x的语义值的句法规则(
syntactic rule
) -
M
M
M是将
x
x
x的语义值与其先关意义结合的语义规则(
semantic rule
)
Mamdani Implication
:
μ
R
M
(
x
,
y
)
=
min
[
μ
A
(
x
)
,
μ
B
(
y
)
]
\mu_{R_M}(x, y)=\min[\mu_A(x), \mu_B(y)]
μRM(x,y)=min[μA(x),μB(y)]
Product Implication
:
μ
R
p
(
x
,
y
)
=
μ
A
(
x
)
μ
B
(
y
)
\mu_{R_p}(x, y)=\mu_A(x)\mu_B(y)
μRp(x,y)=μA(x)μB(y)
去模糊化
将经过模糊推理后产生的结论转为明确数值的的过程称为去模糊化
重心法(center of gravity defuzzifier or center of area defuzzifier)
当论域为连续
y
∗
=
∫
Y
μ
C
(
y
)
y
d
y
∫
Y
μ
C
(
y
)
d
y
y^*=\frac{\int_Y\mu_C(y)ydy}{\int_Y\mu_C(y)dy}
y∗=∫YμC(y)dy∫YμC(y)ydy
当论域为离散
y
∗
=
∑
i
=
1
L
μ
C
(
y
i
)
y
i
∑
i
=
1
L
μ
C
(
y
i
)
y^*=\frac{\sum_{i=1}^L\mu_C(y_i)y_i}{\sum_{i=1}^L\mu_C(y_i)}
y∗=∑i=1LμC(yi)∑i=1LμC(yi)yi
最大平均法(mean of maximal defuzzifier)
y ∗ = 1 N ∑ j = 1 N y j y^*=\frac{1}{N}\sum_{j=1}^Ny_j y∗=N1j=1∑Nyj
修正型最大平均法(modified mean of maximal defuzzifier)
y ∗ = max j y j + min j y j 2 y^*=\frac{\max_j y_j+\min_j y_j}{2} y∗=2maxjyj+minjyj
中心平均法(modified center average defuzzifier)
y ∗ = ∑ j = 1 J y ˉ j μ C j ( y ˉ j ) ∑ j = 1 J μ C j ( y ˉ j ) y^*=\frac{\sum_{j=1}^J\bar{y}^j\mu_{C^j}(\bar{y}^j)}{\sum_{j=1}^J\mu_{C^j}(\bar{y}^j)} y∗=∑j=1JμCj(yˉj)∑j=1JyˉjμCj(yˉj)