【Fuzzy】模糊专家系统(3)

合成运算

一个重要的模糊关系算子为composition,用在关系与关系(relation-relation)的合成或者集合与关系(set-relation)的合成.
最大-最小合成(max-min operation)最为常用.
如果 P P P Q Q Q分别为定义于 X × Y X\times Y X×Y以及 Y × Z Y\times Z Y×Z上的两个确定关系,由合成运算,将 P P P以及 Q Q Q转换为定义在 X × Z X\times Z X×Z上的关系 R R R.
R ( X × Z ) = P ( X × Y ) ∘ Q ( Y × Z ) = { ( x , z ) ∣ ∃ ( x , y ) ∈ P , ( y , z ) ∈ Q } \begin{aligned} &R(X\times Z)\\ &=P(X\times Y)\circ Q(Y\times Z)\\ &=\{(x, z)\mid \exist (x, y)\in P, (y, z)\in Q \} \end{aligned} R(X×Z)=P(X×Y)Q(Y×Z)={(x,z)(x,y)P,(y,z)Q}
max-min合成运算子为
μ R ( x , z ) = ∨ y ∈ Y ( μ P ( x , y ) ∧ μ Q ( y , z ) ) = max ⁡ y ∈ Y [ min ⁡ ( μ P ( x , y ) , μ Q ( y , z ) ) ] \begin{aligned} \mu_R(x, z)&=\vee_{y\in Y}(\mu_P(x, y)\wedge \mu_Q(y, z))\\ &=\max_{y\in Y}[\min(\mu_P(x, y), \mu_Q(y, z))] \end{aligned} μR(x,z)=yY(μP(x,y)μQ(y,z))=yYmax[min(μP(x,y),μQ(y,z))]

模糊规则

语义式变量组成元素有5个 ( x , T ( x ) , U , G , M ) (x, T(x), U, G, M) (x,T(x),U,G,M).
- x x x 是变量的名称

  • T ( x ) T(x) T(x) x x x的措词集(term set),即形容 x x x的语义子句所构成的集合
  • U U U是变量 x x x的语义值(linguistic value)
  • G G G是产生 x x x的语义值的句法规则(syntactic rule)
  • M M M是将 x x x的语义值与其先关意义结合的语义规则(semantic rule)

Mamdani Implication: μ R M ( x , y ) = min ⁡ [ μ A ( x ) , μ B ( y ) ] \mu_{R_M}(x, y)=\min[\mu_A(x), \mu_B(y)] μRM(x,y)=min[μA(x),μB(y)]
Product Implication: μ R p ( x , y ) = μ A ( x ) μ B ( y ) \mu_{R_p}(x, y)=\mu_A(x)\mu_B(y) μRp(x,y)=μA(x)μB(y)

去模糊化

将经过模糊推理后产生的结论转为明确数值的的过程称为去模糊化

重心法(center of gravity defuzzifier or center of area defuzzifier)

当论域为连续
y ∗ = ∫ Y μ C ( y ) y d y ∫ Y μ C ( y ) d y y^*=\frac{\int_Y\mu_C(y)ydy}{\int_Y\mu_C(y)dy} y=YμC(y)dyYμC(y)ydy
当论域为离散
y ∗ = ∑ i = 1 L μ C ( y i ) y i ∑ i = 1 L μ C ( y i ) y^*=\frac{\sum_{i=1}^L\mu_C(y_i)y_i}{\sum_{i=1}^L\mu_C(y_i)} y=i=1LμC(yi)i=1LμC(yi)yi

最大平均法(mean of maximal defuzzifier)

y ∗ = 1 N ∑ j = 1 N y j y^*=\frac{1}{N}\sum_{j=1}^Ny_j y=N1j=1Nyj

修正型最大平均法(modified mean of maximal defuzzifier)

y ∗ = max ⁡ j y j + min ⁡ j y j 2 y^*=\frac{\max_j y_j+\min_j y_j}{2} y=2maxjyj+minjyj

中心平均法(modified center average defuzzifier)

y ∗ = ∑ j = 1 J y ˉ j μ C j ( y ˉ j ) ∑ j = 1 J μ C j ( y ˉ j ) y^*=\frac{\sum_{j=1}^J\bar{y}^j\mu_{C^j}(\bar{y}^j)}{\sum_{j=1}^J\mu_{C^j}(\bar{y}^j)} y=j=1JμCj(yˉj)j=1JyˉjμCj(yˉj)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quant0xff

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值