LLM 中的参数单位

  1. M (Mega) 相比于 Million

    • 1M (Mega) 在计算机科学中等于 ( 2^{20} )(即 1,048,576)字节。
    • 1 Million 等于 ( 10^6 )(即 1,000,000)。
    • 因此,1M (Mega) 在数字上略小于 1 Million。
  2. G (Giga) 相比于 Billion

    • 1G (Giga) 在计算机科学中等于 ( 2^{30} )(即 1,073,741,824)字节。
    • 1 Billion 等于 ( 10^9 )(即 1,000,000,000)。
    • 1G (Giga) 在数字上略大于 1 Billion。
  3. T (Tera) 相比于 Trillion

    • 1T (Tera) 在计算机科学中等于 ( 2^{40} )(即 1,099,511,627,776)字节。
    • 1 Trillion 等于 ( 10^{12} )(即 1,000,000,000,000)。
    • 1T (Tera) 在数字上略大于 1 Trillion。
  4. P (Peta) 相比于 Quadrillion(没有常用的 “Pillion” 词汇):

    • 1P (Peta) 在计算机科学中等于 ( 2^{50} )(即 1,125,899,906,842,624)字节。
    • 1 Quadrillion(在美国和现代英语中的千万亿)等于 ( 10^{15} )(即 1,000,000,000,000,000)。
    • 1P (Peta) 在数字上略小于 1 Quadrillion。
### 实现 LLM 大型语言模型监控 为了有效监控大型语言模型(LLM),可以从以下几个方面入手: #### 1. 性能指标监测 性能指标对于评估 LLM 的运行状况至关重要。主要关注两个核心指标:延迟吞吐量。 - **延迟**是指从接收到请求到返回响应的时间间隔。低延迟意味着更快的响应速度,这对于实时应用尤为重要。 - **吞吐量**表示单位时间内处理的任务数量。高吞吐量表明系统能够在较短时间内完成更多工作[^5]。 ```python import time def measure_latency(model, input_data): start_time = time.time() model(input_data) end_time = time.time() return end_time - start_time def calculate_throughput(total_requests, total_time_seconds): return total_requests / total_time_seconds ``` #### 2. 资源利用率跟踪 除了性能外,还需要密切监视服务器上的 CPU、内存以及 GPU 使用情况。这有助于及时发现潜在瓶颈并采取相应措施加以缓解。 工具如 Prometheus Grafana 可用于收集硬件层面的数据,并可视化展示出来以便于分析。 #### 3. 日志记录与异常检测 日志文件保存了每次调用期间发生的事件详情,包括错误信息其他重要提示。定期审查这些记录可以帮助定位问题根源;同时也可以设置报警机制,在遇到特定类型的失败时自动通知相关人员。 Python 中的日志模块 `logging` 提供了一个灵活的方式来管理应用程序内部的消息流。 ```python import logging logger = logging.getLogger(__name__) handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) try: # Your code here... except Exception as e: logger.error(f'An error occurred: {e}') ``` #### 4. A/B 测试与持续改进 通过对比不同版本之间的表现差异来进行A/B测试,进而找出最优配置参数组合。随着新数据不断加入训练集,保持迭代更新也是提升模型质量的关键所在。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值