机器学习变量转换(定性变量、定量变量)

为了更好地讨论问题,将模型的自变量分类。在模型里使用的变量可以分为两类:数值型变量和类别型变量。如图1所示。

一、定义

数值型变量,在学术上被称为定量变量(quantitative variable),如长度、收入、重量等。它们的数值表示具体的测量或计数。事实上,定量变量按是否连续可进一步细分为连续型变量和离散型变量。在一定区间内可以任意取值的变量叫连续型变量,比如人的身高、体重等;反之则是离散型变量,比如公司员工人数等。

类别型变量,也被称为定性变量(categorical variable)。比如性别、省份、学历、产品等级等。这类变量的取值通常是用文字而非数字来表示。比如对于性别这个变量,可能的取值为男、女。因此要将文字变量转换为数字变量,并且保证对于转换之后的变量,数学运算是有意义的,这并不是一件容易的事情。通常针对一个类别型变量,我们会用一个数字去表示其中的一个类别,但这样的转换方法并不能满足要求:

  • 对于有序的类别型变量,比如产品等级,0表示合格、1表示良好、2表示优秀。这种情况下,0小于1的确对应着合格等级次于良好等级,但数字间的四则运算就没有对应意义了。数学上2减1等于1,但对于产品等级,优秀减去良好还等于良好吗?
  • 对于无序的类别型变量,比如对于省份,0表示北京、1表示上海、2表示深圳等。数字间的大小关系和四则运
在R语言中,如果你有一个定性(分类或名义)变量,想要将其转换定量(连续数值)以便进行分析,通常需要进行一些数据编码步骤。以下是几个常见的方法: 1. **哑变量编码** (One-Hot Encoding): 如果变量是有限的类别,如性别(男、女),你可以创建一个虚拟变量矩阵,对每个类别创建一个新的列,值为1表示该类别,0表示其他。例如,在`data.frame`中: ```R df$gender_encoded <- model.matrix(~ gender - 1, data = df) ``` 这里`-1`表示去除截距项。 2. **标签编码** (Label Encoding): 对于有序类别(如教育程度:小学、初中、高中、大学),可以给每个级别分配一个连续数字,不过这种方法可能不适合用于机器学习模型,因为它假设类别之间有线性的顺序,而实际上可能并非如此。 ```R library(tidyverse) df$education_code <- case_when( education == "小学" ~ 1, education == "初中" ~ 2, education == "高中" ~ 3, TRUE ~ 4 ) ``` 3. **因子到整数** (Factor to Integer): 可以直接通过`as.numeric()`函数,但是默认会跳过缺失值,并按顺序赋值。如果需要指定编码顺序,可以先转为因子再操作: ```R df$education_numeric <- as.numeric(factor(education)) ``` 请注意,转换前最好先确认这种处理是否符合你的分析需求和变量的含义,因为某些分析方法可能会对编码结果敏感。此外,对于机器学习模型,推荐使用哑变量编码或其他更为复杂的编码技术,如聚类编码等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值