118. 杨辉三角解题思路

文章目录

题目

给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。

示例 1:

输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

示例 2:

输入: numRows = 1
输出: [[1]]

提示:

1 <= numRows <= 30

解题思路

具体来说,该函数接受一个整数参数 numRows,表示要生成的杨辉三角的行数。函数返回一个列表,包含所有行的列表,其中每个列表表示一个行的数字。

在函数实现中,首先创建一个空的列表 triangle,用于存储生成的杨辉三角。然后创建一个包含 1 的列表 row0,作为三角的第一行,并将其添加到 triangle 中。

接下来,从第二行开始循环,根据杨辉三角的规律,利用上一行的元素计算出当前行的元素,并将所有元素依次添加到 currRow 中。

循环完成后,将 currRow 添加到 triangle 中,并返回 triangle。

该函数的时间复杂度为 O(N2),空间复杂度为 O(N2)。

public class Solution {
    public IList<IList<int>> Generate(int numRows) 
    {
        IList<IList<int>> triangle = new List<IList<int>>();
        IList<int> row0 = new List<int>();
        row0.Add(1);
        triangle.Add(row0);
        for(int i = 1;i<numRows;i++)
        {
            IList<int> prevRow = triangle[i - 1];
            IList<int> currRow = new List<int>();
            for(int j = 0;j<=i;j++)
            {
                if(j==0||j==i)
                {
                    currRow.Add(1);
                }
                else
                {
                    currRow.Add(prevRow[j - 1] + prevRow[j]);
                }
            }
            triangle.Add(currRow);
        }
        return triangle;
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

睡不着乌托托

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值