最近我们被客户要求撰写关于回测交易的研究报告,包括一些图形和统计输出。
本文介绍如何根据历史信号/交易制作股票曲线。
让我们以MARKET TIMING与DECISION MOOSE的历史信号为例,为该策略创建股票曲线。
#*****************************************************************
# 加载信号
#*****************************************************************
# 提取交易历史
temp = extract.table.from.webpage(txt, 'Transaction History', has.header = F)
temp = trim(temp[-1,2:5])
colnames(temp) = spl('id,date,name,equity')
tickers = toupper(trim(gsub('\\)','', sapply(temp[,'name'], spl, '\\('))))[2,]
load(file=filename)
#plota(make.xts(info$equity, info$date), type='l')
#*****************************************************************
# 加载历史数据
#*****************************************************************
tickers = unique(info$tickers)
# 加载保存的代理原始数据
load('data/data.proxy.raw.Rdata')
# 定义现金
tickers = gsub('3MOT','3MOT=BIL+TB3M', tickers)
#飞毛腿新亚洲基金(SAF),并入DWS新兴市场股票基金
tickers = gsub('SAF','SAF=SEKCX', tickers)
#添加虚拟股票,以保持交易日期,如果它们与数据不一致的话
dummy = make.stock.xts(make.xts(info$equity, info$date))
getSymbols.extra(tickers, src = 'yahoo', from = '1970-01-01', env = data, raw.data = data.proxy.raw, auto.assign = T)
# 可选择未被Adjusted捕获的分叉点
#data.clean(data, min.ratio=3)
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
#print(bt.start.dates(data))
data$dummy = dummy
#*****************************************************************
# 设置
#*****************************************************************
prices = data$prices
models = list()
#*****************************************************************
#代码策略,SPY - 买入和持有
#*****************************************************************
data$weight[] = NA
data$weight$SPY = 1
models$SPY = bt.run.share(data, clean.signal=T, silent=T)
#*****************************************************************
# 创建权重
#*****************************************************************
weight = NA * prices
for(t in 1:nrow(info)) {
weight[info$date[t],] = 0
weight[info$date[t], info$ticker[t]] = 1
}
#*****************************************************************
#创建报告
#******************************************************************
plota.matplot(scale.one(data$prices),main='Asset Perfromance')
plot(models, plotX = T)
print(plotbt))
m = 'decisionmoose'
plotbmap(models[[m]]$weight, name=m)