Python实现谱聚类Spectral Clustering算法和改变簇数结果可视化比较

最近我们被客户要求撰写关于谱聚类的研究报告,包括一些图形和统计输出。

 【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例

KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例

,时长06:05

谱聚类是一种将数据的相似矩阵的谱应用于降维的技术。它是有用且易于实现的聚类方法。  

Scikit-learn API 提供了 谱聚类来实现 Python 中的谱聚类方法。谱聚类 将聚类应用于归一化拉普拉斯算子的投影。在本教程中,我们将简要了解如何在 Python 中使用 谱聚类 对数据进行聚类和可视化。教程涵盖:

  1. 准备数据
  2. 使用 谱聚类 和可视化进行聚类
  3. 源代码

我们将首先导入所需的库和函数。


from numpy import random

准备数据

我们将通过使用 make_blob() 函数生成一个简单的数据集并在图中将其可视化。

random.seed
make_blobs

plt
plt.show
 

这是一个易于理解的数据,因此我们将使用谱聚类方法对其进行聚类。

谱聚类和可视化

我们将使用 谱聚类定义模型,然后我们将它拟合到 x 数据上。谱聚类需要聚类的数量,因此将 4 设置为 n_cluster 参数。您可以检查类的参数并根据您的分析和目标数据更改它们。

SptlCltg.fit(x)


SelCg( n_clusters=4) 
   

接下来,我们将在图中可视化聚类数据。为了按颜色区分聚类,我们将从拟合模型中提取标签数据。

labels = sc.labels_

plt.scatter(x[:,0], x[:,1], c=labels)
plt.show()  
 

我们还可以通过改变簇数来检查聚类结果。

plt
f.add_subplot
for i in range:
 sc = Serurg.fit
 f.add_subplot
 plt.scatter
 plt.legen

plt.show
 

在本教程中,我们简要了解了如何使用 Python 中对数据进行聚类和可视化。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值