最近我们被客户要求撰写关于谱聚类的研究报告,包括一些图形和统计输出。
【视频】KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例
KMEANS均值聚类和层次聚类:R语言分析生活幸福质量系数可视化实例
,时长06:05
谱聚类是一种将数据的相似矩阵的谱应用于降维的技术。它是有用且易于实现的聚类方法。
Scikit-learn API 提供了 谱聚类来实现 Python 中的谱聚类方法。谱聚类 将聚类应用于归一化拉普拉斯算子的投影。在本教程中,我们将简要了解如何在 Python 中使用 谱聚类 对数据进行聚类和可视化。教程涵盖:
- 准备数据
- 使用 谱聚类 和可视化进行聚类
- 源代码
我们将首先导入所需的库和函数。
from numpy import random
准备数据
我们将通过使用 make_blob() 函数生成一个简单的数据集并在图中将其可视化。
random.seed
make_blobs
plt
plt.show
这是一个易于理解的数据,因此我们将使用谱聚类方法对其进行聚类。
谱聚类和可视化
我们将使用 谱聚类定义模型,然后我们将它拟合到 x 数据上。谱聚类需要聚类的数量,因此将 4 设置为 n_cluster 参数。您可以检查类的参数并根据您的分析和目标数据更改它们。
SptlCltg.fit(x)
SelCg( n_clusters=4)
接下来,我们将在图中可视化聚类数据。为了按颜色区分聚类,我们将从拟合模型中提取标签数据。
labels = sc.labels_
plt.scatter(x[:,0], x[:,1], c=labels)
plt.show()
我们还可以通过改变簇数来检查聚类结果。
plt
f.add_subplot
for i in range:
sc = Serurg.fit
f.add_subplot
plt.scatter
plt.legen
plt.show
在本教程中,我们简要了解了如何使用 Python 中对数据进行聚类和可视化。