R语言用rle,svm和rpart决策树进行时间序列预测

全文链接:http://tecdat.cn/?p=3072

原文出处:拓端数据部落公众号

【视频】支持向量机SVM、支持向量回归SVR和R语言网格搜索超参数优化实例

支持向量机SVM、支持向量回归SVR和R语言网格搜索超参数优化实例

,时长07:24

 视频:从决策树到随机森林:R语言信用卡违约分析信贷数据实例

从决策树到随机森林:R语言信用卡违约分析信贷数据实例

,时长10:11

下面显示了四种预测时间序列的方法。

支持向量机(R package e1071。“Chih-Chung Chang and Chih-Jen Lin,LIBSVM:a library for support vector machines,2005.”的实现)。

递归分区(R package rpart。“Breiman,Friedman,Olshen and Stone。Classification and Regression Trees,1984”的实现)。

将最后两种方法的性能与rle进行比较,得到svm的95%和rpart的94%。

R :


m$rle(Xvar ='sleep',Xlmin =60)m$setZoo()+ 
rleplot(m$zo[,c(5,7,8)],type ='l')

# Subset a week

# Plot correlation matrix

w$correlation(Xvars =w$nm[c(2:7,9)])

# SVM and Recursive partitioning

plot(tune.gamma.cost)

rpart.p <- predict(rpart.m, data[,-1],type ='class')
sdt$svm = as.integer(svm.p)
dt$rpart = as.integer(rpart.p)
plot(w$dt2zoo(dt)[,c(5,8,9,10)],type ='l')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值