全文链接:http://tecdat.cn/?p=5506
原文出处:拓端数据部落公众号
给直方图和线图添加误差棒
准备数据
这里使用ToothGrowth 数据集。
library(ggplot2)
df <- ToothGrowth
df$dose <- as.factor(df$dose)
head(df)
## len supp dose ## 1 4.2 VC 0.5 ## 2 11.5 VC 0.5 ## 3 7.3 VC 0.5 ## 4 5.8 VC 0.5 ## 5 6.4 VC 0.5 ## 6 10.0 VC 0.5
len :牙齿长度
dose : 剂量 (0.5, 1, 2) 单位是毫克
supp : 支持类型 (VC or OJ)
在下面的例子中,我们将绘制每组中牙齿长度的均值。标准差用来绘制图形中的误差棒。
首先,下面的帮助函数会用来计算每组中兴趣变量的均值和标准差:
#+++++++++++++++++++++++++
# 计算每个组的均值和标准差 #+++++++++++++++++++++++++
# data : a data frame
# varname : 包含变量的列名
#要汇总的 #groupnames : 列名的向量,作为#分组变量使用
data_summary <- function(data, varname, groupnames){
summary_func <- function(x, col){
c(mean = mean(x[[col]], na.rm=TRUE), sd = sd(x[[col]], na.rm=TRUE)) }
data_sum<-ddply(data, groupnames, .fun=summary_func, varname)
data_sum <- rename(data_sum, c("mean" = varname))
return(data_sum)
}
统计数据
df2 <- data_summary(ToothGrowth, varname="len"
, groupnames=c("supp", "dose"))
# 把剂量转换为因子变量
df2$dose=as.factor(df2$dose)
head(df2)
## supp dose len sd ## 1 OJ 0.5 13.23 4.459709 ## 2 OJ 1 22.70 3.910953 ## 3 OJ 2 26.06 2.655058 ## 4 VC 0.5 7.98 2.746634 ## 5 VC 1 16.77 2.515309 ## 6 VC 2 26.14 4.797731
有误差棒的直方图
函数 geom_errorbar()可以用来生成误差棒:
p<- ggplot(df2, aes(x=dose, y=len, fill=supp)) + geom_bar(stat="identity", color="black", position=position_dodge()) + geom_errorbar(aes(ymin=len-sd, ymax=len+sd),)
print(p) # 条形图
你可以选择只保留上方的误差棒:
#只保留上部的误差条
ggplot(df2, aes(x=dose, y=len, fill=supp)) + geom_bar(stat="identity", color="black", position=position_dodge()) + geom_errorbar(aes(ymin=len, ymax=len+sd), width=.2)
有误差棒的线图
p<- ggplot(df2, aes(x=dose, y=len, group=supp, color=supp)) position=position_dodge(0.05)) print(p)
#线图
p+labs(title="Tooth length per dose", x="Dose (mg)
你也可以使用函数 geom_pointrange() 或 geom_linerange() 替换 geom_errorbar()
#用 geom_pointrange
geom_pointrange(aes(ymin=len-sd, ymax=len+sd))
# 用 geom_line()+geom_pointrange()
geom_line()+ geom_pointrange(aes(ymin=len-sd, ymax=len+sd))
有均值和误差棒点图
使用函数 geom_dotplot() and stat_summary() :
平均值+/-SD可以作为误差条或点范围添加。
# 用geom_crossbar()
p + stat_summary(fun.data="mean_sdl", fun.args = list(mult=1), geom="crossbar", width=0.5)
# 用geom_errorbar()
geom="errorbar", color="red", width=0.2) + stat_summary(fun.y=mean, geom="point", color="red")
# 用geom_pointrange()
summary(fun.data=mean_sdl, fun.args = list(mult=1))