r语言ggplot2误差棒图快速指南

文链接:http://tecdat.cn/?p=5506

原文出处:拓端数据部落公众号

给直方图和线图添加误差棒

准备数据

这里使用ToothGrowth 数据集。

library(ggplot2) 
df <- ToothGrowth 
df$dose <- as.factor(df$dose) 
head(df) 
## len supp dose ## 1 4.2 VC 0.5 ## 2 11.5 VC 0.5 ## 3 7.3 VC 0.5 ## 4 5.8 VC 0.5 ## 5 6.4 VC 0.5 ## 6 10.0 VC 0.5

len :牙齿长度
dose : 剂量 (0.5, 1, 2) 单位是毫克
supp : 支持类型 (VC or OJ)

在下面的例子中,我们将绘制每组中牙齿长度的均值。标准差用来绘制图形中的误差棒。

首先,下面的帮助函数会用来计算每组中兴趣变量的均值和标准差:

#+++++++++++++++++++++++++ 
# 计算每个组的均值和标准差 #+++++++++++++++++++++++++ 
# data : a data frame 
# varname : 包含变量的列名  
#要汇总的 #groupnames : 列名的向量,作为#分组变量使用  
data_summary <- function(data, varname, groupnames){ 

summary_func <- function(x, col){ 
c(mean = mean(x[[col]], na.rm=TRUE), sd = sd(x[[col]], na.rm=TRUE)) } 
data_sum<-ddply(data, groupnames, .fun=summary_func, varname) 
data_sum <- rename(data_sum, c("mean" = varname)) 
return(data_sum) 
}

统计数据 

df2 <- data_summary(ToothGrowth, varname="len"
, groupnames=c("supp", "dose")) 
# 把剂量转换为因子变量 
df2$dose=as.factor(df2$dose) 
head(df2) 
## supp dose len sd ## 1 OJ 0.5 13.23 4.459709 ## 2 OJ 1 22.70 3.910953 ## 3 OJ 2 26.06 2.655058 ## 4 VC 0.5 7.98 2.746634 ## 5 VC 1 16.77 2.515309 ## 6 VC 2 26.14 4.797731 
有误差棒的直方图

函数 geom_errorbar()可以用来生成误差棒:

p<- ggplot(df2, aes(x=dose, y=len, fill=supp)) + geom_bar(stat="identity", color="black", position=position_dodge()) + geom_errorbar(aes(ymin=len-sd, ymax=len+sd),) 
print(p) # 条形图

  

你可以选择只保留上方的误差棒:

#只保留上部的误差条 
ggplot(df2, aes(x=dose, y=len, fill=supp)) + geom_bar(stat="identity", color="black", position=position_dodge()) + geom_errorbar(aes(ymin=len, ymax=len+sd), width=.2)

  

  

有误差棒的线图 
p<- ggplot(df2, aes(x=dose, y=len, group=supp, color=supp)) position=position_dodge(0.05)) print(p) 
#线图 
p+labs(title="Tooth length per dose", x="Dose (mg)

你也可以使用函数 geom_pointrange() 或 geom_linerange() 替换 geom_errorbar()

#用 geom_pointrange 
geom_pointrange(aes(ymin=len-sd, ymax=len+sd)) 
# 用 geom_line()+geom_pointrange() 
 geom_line()+ geom_pointrange(aes(ymin=len-sd, ymax=len+sd))

 
 

有均值和误差棒点图

使用函数 geom_dotplot() and stat_summary() :

平均值+/-SD可以作为误差条或点范围添加。


 # 用geom_crossbar() 
p + stat_summary(fun.data="mean_sdl", fun.args = list(mult=1), geom="crossbar", width=0.5) 
# 用geom_errorbar() 
 geom="errorbar", color="red", width=0.2) + stat_summary(fun.y=mean, geom="point", color="red") 
# 用geom_pointrange() 
summary(fun.data=mean_sdl, fun.args = list(mult=1))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值