Perplexica:开源 AI 搜索引擎,Perplexity AI 的开源替代品,支持多种搜索模式、实时信息更新

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

功能:支持多种搜索模式,包括全网搜索、写作助手、学术搜索等。
实时更新:通过 SearxNG 确保搜索结果的实时性和准确性。
API 集成:支持开发者将 Perplexica 集成到自己的应用程序中。

正文(附运行示例)

Perplexica 是什么

在这里插入图片描述

Perplexica 是一款开源的 AI 驱动搜索引擎,是 Perplexity AI 的开源替代品。它基于机器学习算法和自然语言处理技术理解用户查询,提供精确答案。Perplexica 支持多种搜索模式,包括全网搜索、写作助手、学术搜索、YouTube 搜索、Wolfram Alpha 搜索和 Reddit 搜索。此外,Perplexica 还支持本地大型语言模型(LLM),如 Llama3 和 Mixtral,提高搜索准确性。集成 SearxNG 搜索技术确保用户获得最新的信息。

Perplexica 的主要功能

  • 本地 LLM 支持:Perplexica 支持用本地大型语言模型(LLM),如 Llama3 和 Mixtral,提高搜索准确性。
  • 常规模式:处理用户查询、执行网络搜索。
  • 专注模式:包括多种特定类型的搜索模式,如:
    • 全网搜索模式:搜索整个网络寻找最佳结果。
    • 写作助手模式:帮助进行不需要网络搜索的写作任务。
    • 学术搜索模式:搜索学术文章和论文,适合学术研究。
    • YouTube 搜索模式:根据查询找到 YouTube 视频。
    • Wolfram Alpha 搜索模式:用 Wolfram Alpha 进行需要计算或数据分析的查询。
    • Reddit 搜索模式:搜索 Reddit 找到与查询相关的讨论和意见。
  • API 集成:支持开发者将 Perplexica 集成到自己的应用程序中,使用搜索功能。
  • 实时信息更新:用 SearxNG 元搜索引擎,确保提供最新信息。

Perplexica 的技术原理

  • 用户交互:用户基于 WebSocket 发送消息到后端服务器,触发处理链。
  • 查询处理:消息被传递到一个链,该链根据聊天历史和问题预测是否需要搜索网络。如果需要,将生成一个查询。
  • 网络搜索:查询基于 SearXNG 进行网络搜索,获取信息。
  • 相似性搜索:搜索到的信息基于转换成嵌入、进行相似性搜索找到最相关的资源。
  • 响应生成:资源被传递到响应生成器,结合聊天历史、查询和资源生成回应。
  • 用户界面显示:最终的回应基于用户界面显示给用户,完成整个搜索和响应过程。

如何运行 Perplexica

使用 Docker 安装

  1. 确保 Docker 已安装并运行在系统上。
  2. 克隆 Perplexica 仓库:
git clone https://github.com/ItzCrazyKns/Perplexica.git
  1. 导航到包含项目文件的目录。

  2. sample.config.toml 文件重命名为 config.toml,并填写必要的字段:

    • OPENAI:您的 OpenAI API 密钥(仅在使用 OpenAI 模型时填写)。
    • OLLAMA:您的 Ollama API URL,格式为 http://host.docker.internal:PORT_NUMBER
    • GROQ:您的 Groq API 密钥(仅在使用 Groq 模型时填写)。
    • ANTHROPIC:您的 Anthropic API 密钥(仅在使用 Anthropic 模型时填写)。
    • SIMILARITY_MEASURE:相似性度量方法(默认已填写,不确定时可以保留)。
  3. 在包含 docker-compose.yaml 文件的目录中执行:

docker compose up -d
  1. 等待几分钟,直到设置完成。您可以通过浏览器访问 http://localhost:3000 使用 Perplexica。

使用 Perplexica 的 API

Perplexica 提供了一个 API,允许开发者将其强大的搜索功能集成到自己的应用程序中。您可以运行搜索、使用多种模型并获取查询答案。详细文档请参阅 API 文档

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

### Perplexity AI 搜索 API 文档与集成教程 Perplexity AI 是一款基于人工智能技术的搜索引擎支持自然语言处理、语义理解和多模态搜索等功能[^2]。为了方便开发者将其强大的搜索功能集成到自己的应用程序中,Perplexity AI 提供了一套完整的 API 和详细的文档。 #### 官方资源 以下是关于 Perplexity AI 搜索 API 的官方资源链接: - **GitHub 仓库**: https://github.com/ItzCrazyKns/Perplexica - **官方文档**: https://github.com/ItzCrazyKns/Perplexica/tree/master/docs - **安装指南**: https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/installation - **API 文档**: https://github.com/ItzCrazyKns/Perplexica/tree/master/docs/API/SEARCH.md 这些文档涵盖了从基础概念到高级使用的全部内容,适合不同水平的开发者参考和学习[^1]。 #### 集成步骤概述 虽然不能使用步骤词汇描述具体过程,但可以说明以下几点核心内容: 1. 开发者可以通过访问上述提供的 API 文档详细了解如何调用接口以及参数设置方法。 2. 使用 Python 或其他编程语言编写脚本时,需引入必要的依赖库并配置 API 密钥。 3. 示例代码展示如何发起一次基本的搜索请求,并解析返回的数据结构。 ```python import requests def search_perplexity(query, api_key): url = "https://api.perplexity.ai/v1/search" headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json", } payload = {"query": query} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: return response.json() else: raise Exception(f"Error: {response.status_code}, Message: {response.text}") # 替换为您的实际 API Key api_key = "your_api_key_here" result = search_perplexity("What is the capital of France?", api_key) print(result) ``` 此代码片段展示了如何通过 POST 请求向 Perplexity AI 发起搜索操作,并打印结果数据[^4]。 #### 功能扩展 除了标准的搜索功能外,Perplexity AI 还集成了更多实用特性,例如内容生成、文档管理及自动化流程优化等[^3]。这使得该工具不仅适用于传统的信息检索场景,还能满足复杂业务需求下的定制化开发。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值