StoryTeller:字节、上海交大、北大共同推出的全自动长视频描述生成一致系统

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

系统功能:基于音频视觉角色识别技术,生成详细且连贯的长视频描述。
技术优势:在MovieQA任务中准确率比最强基线Gemini-1.5-pro高9.5%。
应用场景:适用于电影制作、视频内容分析、辅助视障人士等多个领域。

正文(附运行示例)

StoryTeller 是什么

公众号: 蚝油菜花 - StoryTeller

StoryTeller是由字节跳动、上海交通大学和北京大学共同推出的系统,旨在基于音频视觉角色识别技术改善长视频描述的质量和一致性。该系统结合低级视觉概念和高级剧情信息,生成详细且连贯的视频描述。

StoryTeller由视频分割、音频视觉角色识别和描述生成三个主要模块组成。这些模块能够有效处理数分钟长的视频,并在MovieQA任务中展现出比现有模型更高的准确率,比最强基线Gemini-1.5-pro高9.5%的准确率。

StoryTeller 的主要功能

  • 视频分割:将长视频切割成多个短片段,保持每个片段的独立性和完整性。
  • 音频视觉角色识别:结合音频和视觉信息,识别视频中对话对应的角色。
  • 描述生成:为每个视频片段生成详细的描述,整合成整个长视频的连贯叙述。
  • 数据集构建:创建并使用MovieStory101数据集,提供长视频描述的训练和测试数据。
  • 自动评估:基于MovieQA,用GPT-4自动评估视频描述的准确性和质量。
  • 模型训练与微调:训练多模态大型语言模型,提高角色识别和视频描述的准确性。
  • 全局解码:确保同一角色在不同视频片段中保持一致的识别结果。

StoryTeller 的技术原理

  • 多模态融合:整合视觉(视频帧)、音频(对话)和文本(字幕和描述)信息,全面理解视频内容。
  • 音频分离和角色ID分配:用音频嵌入模型对每个对话进行嵌入,基于聚类算法分配全局ID,将相似的音频嵌入分配相同的ID,表示同一角色。
  • 音频视觉角色识别模型:用大型语言模型(如Tarsier-7B)结合OpenAI的Whisper-large-v2音频编码器,将每个音频ID映射到特定的角色。
  • 全局解码算法:在推理时,确保不同片段中相同角色的全局ID映射到一致的角色名称,提高角色识别的准确性。
  • 视频描述生成:用识别结果作为输入,基于大型语言模型生成每个片段的详细描述,并整合成完整的视频描述。

如何运行 StoryTeller

1. 生成视频帧和音频文件

python script/preprocess/preprocess.py
  • 输入视频路径:data/video
  • 输出帧路径:data/frame
  • 输出音频路径:data/audio

2. 将3分钟视频片段分割成小段

pip install scenedetect
scenedetect -i movie.mp4 -o data/raw_data/scene_detect -q detect-adaptive -t 2.0 list-scenes
python script/scene_split/scene_split.py
python script/scene_split/update_scene_split.py

3. 生成每个角色的参考照片

对于MovieQA数据集,已提供每个片段的演员列表。对于其他电影,可以从IMDb获取演员列表并使用面部识别算法。

4. 进行全局音频分离

python script/global_diarization/eval_embedding.py --input_file data/global_diarization/embeddings.jsonl
python script/global_diarization/update_diarization.py --input_file data/global_diarization/embeddings.jsonl --output_file data/global_diarization/diarization_id.jsonl

5. 音频视觉角色识别

python script/audio_visual_diarization/gen_infer.py
python tasks/inference_quick_start.py --model_name_or_path checkpoints/Whisper-large-v2-Tarsier-7B-character-identification --input_path data/audio_visual_diarization/data.jsonl --output_path data/audio_visual_diarization/0.jsonl
python script/audio_visual_diarization/alignment.py
python tasks/inference_quick_start.py --model_name_or_path checkpoints/Whisper-large-v2-Tarsier-7B-character-identification --input_path data/audio_visual_diarization/align_data/data.jsonl --output_path data/audio_visual_diarization/correct/0.jsonl

6. 长视频描述生成

python script/long_video_description/gen_infer.py
python tasks/inference_quick_start.py --model_name_or_path checkpoints/Tarsier-7B-description-generation --input_path data/long_video_description/data.jsonl --output_path data/long_video_description/0.jsonl
python dense_description.py
python script/long_video_description/eval_qa_accuracy.py --pred_caption_path result/tarsier/dense_caption_name.json --out_path result/tarsier/qa_name.jsonl

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值