CLEAR:新加坡国立大学推出线性注意力机制,使8K图像的生成速度提升6.3倍,显著减少了计算量和时间延迟

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 线性复杂度:通过局部注意力机制将预训练DiTs的复杂度从二次降低到线性。
  2. 效率提升:显著减少计算量和时间延迟,加速高分辨率图像生成。
  3. 跨模型泛化:CLEAR支持零样本泛化到其他模型和插件,无需额外适配。

正文(附运行示例)

CLEAR 是什么

公众号: 蚝油菜花 - CLEAR

CLEAR是新加坡国立大学推出的一种新型线性注意力机制,旨在提升预训练扩散变换器(DiTs)生成高分辨率图像的效率。通过将每个查询的注意力限制在局部窗口内,CLEAR实现了对图像分辨率的线性复杂度,从而降低了计算成本。实验表明,CLEAR在10K次迭代微调后,能在保持与原始模型相似性能的同时,减少99.5%的注意力计算,并在生成8K图像时提速6.3倍。

CLEAR不仅支持跨模型和插件的零样本泛化,还支持多GPU并行推理,增强了模型的适用性和扩展性。

CLEAR 的主要功能

  • 线性复杂度:通过局部注意力机制将预训练DiTs的复杂度从二次降低到线性,适用于高分辨率图像生成。
  • 效率提升:在生成高分辨率图像时,显著减少计算量和时间延迟,加速图像生成过程。
  • 知识转移:通过少量的微调,能有效地从预训练模型转移知识到学生模型,保持生成质量。
  • 跨分辨率泛化:CLEAR展现出良好的跨分辨率泛化能力,能处理不同尺寸的图像生成任务。
  • 跨模型/插件泛化:CLEAR训练得到的注意力层能零样本泛化到其他模型和插件,无需额外适配。
  • 多GPU并行推理:CLEAR支持多GPU并行推理,优化大规模图像生成的效率和扩展性。

CLEAR 的技术原理

  • 局部注意力窗口:将每个查询(query)的限制在局部窗口内,仅与窗口内的键值(key-value)进行交互,实现线性复杂度。
  • 圆形窗口设计:与传统的正方形滑动窗口不同,CLEAR采用圆形窗口,考虑每个查询的欧几里得距离内的所有键值。
  • 知识蒸馏:在微调过程中,CLEAR用知识蒸馏目标,基于流匹配损失和预测/注意力输出一致性损失,减少线性化模型与原始模型之间的差异。
  • 多GPU并行推理优化:CLEAR基于局部注意力的局部性,减少多GPU并行推理时的通信开销,提高大规模图像生成的效率。
  • 保持原始功能:尽管每个查询仅访问局部信息,但通过堆叠多个Transformer块,每个令牌(token)能逐步捕获整体信息,类似于卷积神经网络的操作。
  • 稀疏注意力实现:作为一种稀疏注意力机制,能在GPU上高效实现,并利用底层优化。

如何运行 CLEAR

安装环境

CLEAR需要torch>=2.5.0diffusers>=0.31.0,以及其他依赖包。可以通过以下命令设置环境:

conda create -n CLEAR python=3.12
conda activate CLEAR
pip install -r requirements.txt

克隆仓库

git clone https://github.com/Huage001/CLEAR.git

下载模型

CLEAR提供了多个版本的模型,支持不同的局部窗口大小。可以通过以下命令下载模型:

mkdir ckpt
wget https://huggingface.co/Huage001/CLEAR/resolve/main/clear_local_8_down_4.safetensors

运行推理

如果想要比较线性化的FLUX模型与原始模型,可以运行inference_t2i.ipynb。如果需要高分辨率加速,可以运行inference_t2i_highres.ipynb

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值