【神经网络】如何对数组横向进行标准化

在神经网络数据预处理时,针对数组进行行Z-score标准化(0-1标准化)遇到挑战。常规方法由于Python的矩阵运算特性导致计算错误。解决方案是利用NumPy的广播机制,通过在均值向量上添加维度,实现行向量的正确标准化,例如使用None、np.newaxis或直接改变平均值的形状。这些方法都能有效且简洁地处理问题。
摘要由CSDN通过智能技术生成

如果要对数组按行进行Z-score标准化(0-1标准化)

最近在实现数据的标准化时,发生了很难按行进行标准化的情况:

问题

      1、按照普通的写法很容易发生如下的情况

import numpy as np

A = np.array([[1,2,3], [4,5,6], [7,8,9]])
print(A.mean(axis=1))
print(A-np.mean(A, axis=1))
[2. 5. 8.]
[[-1. -3. -5.]
 [ 2.  0. -2.]
 [ 5.  3.  1.]]

均值虽是按行求得,最后得到的结果是个行向量,但是在减的过程中,python自动将其填充为多维矩阵进行相减,最后无法求得正确结果。

      2、尝试将均值转置为列向量进行相减,结果依旧如上所示。

      3、对每一行单独处理

mean=A.mean(axis=1)
for k in range(A.shape[1]):
    A[:,k]=A[:,k]-mean

      这样的方法太过复杂,Python中知否有直接就能进行计算的方法?

解决方法

       下面的每个方法通过在平均向量中添加维度,使其成为4 x 1数组,然后NumPy的广播负责其余的操作。每个方法都会创建一个平均的视图,而不是深刻的副本。

1、使用none


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值