如果要对数组按行进行Z-score标准化(0-1标准化)
最近在实现数据的标准化时,发生了很难按行进行标准化的情况:
问题
1、按照普通的写法很容易发生如下的情况
import numpy as np
A = np.array([[1,2,3], [4,5,6], [7,8,9]])
print(A.mean(axis=1))
print(A-np.mean(A, axis=1))
[2. 5. 8.]
[[-1. -3. -5.]
[ 2. 0. -2.]
[ 5. 3. 1.]]
均值虽是按行求得,最后得到的结果是个行向量,但是在减的过程中,python自动将其填充为多维矩阵进行相减,最后无法求得正确结果。
2、尝试将均值转置为列向量进行相减,结果依旧如上所示。
3、对每一行单独处理
mean=A.mean(axis=1)
for k in range(A.shape[1]):
A[:,k]=A[:,k]-mean
这样的方法太过复杂,Python中知否有直接就能进行计算的方法?
解决方法
下面的每个方法通过在平均向量中添加维度,使其成为4 x 1数组,然后NumPy的广播负责其余的操作。每个方法都会创建一个平均的视图,而不是深刻的副本。
1、使用none