to calculate the number of balanced numbers in a given range [x, y].
2 0 9 7604 24324
10 897
/**
hdu 3709 数位dp(自身平衡的数字)
题目大意:求给定区间内满足自身平衡的数的个数,所谓平衡,
比如:4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively.
解题思路:枚举支点。dp[i][j][k] i表示处理到的数位,j是支点,k是力矩和。但是要要把全是0的数排除
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <stack>
using namespace std;
typedef long long ll;
#define PI 3.1415926535897932
#define E 2.718281828459045
#define INF 0x3f3f3f3f
#define mod 100000007
const int M=1005;
int n,m;
int cnt;
int sx,sy,sz;
int mp[1000][1000];
int pa[M*10],rankk[M];
int head[M*6],vis[M*100];
int dis[M*100];
ll prime[M*1000];
bool isprime[M*1000];
int lowcost[M],closet[M];
char st1[5050],st2[5050];
int len[M*6];
typedef pair<int ,int> ac;
//vector<int> g[M*10];
ll dp[50][50][2000];
int has[10500];
int month[13]= {0,31,59,90,120,151,181,212,243,273,304,334,0};
int dir[8][2]= {{0,1},{0,-1},{-1,0},{1,0},{1,1},{1,-1},{-1,1},{-1,-1}};
void getpri()
{
ll i;
int j;
cnt=0;
memset(isprime,false,sizeof(isprime));
for(i=2; i<1000000LL; i++)
{
if(!isprime[i])prime[cnt++]=i;
for(j=0; j<cnt&&prime[j]*i<1000000LL; j++)
{
isprime[i*prime[j]]=1;
if(i%prime[j]==0)break;
}
}
}
struct node
{
int v,w;
node(int vv,int ww)
{
v=vv;
w=ww;
}
};
vector<int> g[M*100];
string str[1000];
int bit[50];
ll dfs(int cur,int s,int presum,int e,int z){//presum为左右两边力矩和(一边正一边负),若为0,则表示平衡
if(cur<0) return presum==0;
if(presum<0)return 0;//力矩和为负,则后面的必然小于0 剪枝
if(!e&&!z&&dp[cur][s][presum]!=-1) return dp[cur][s][presum];
int endx=e?bit[cur]:9;
ll ans=0;
for(int i=0;i<=endx;i++){
if(z&&!i) ans+=dfs(cur-1,s,presum,e&&i==endx,1);//s是支点,整个dfs过程中不变
else ans+=dfs(cur-1,s,presum+(cur-s)*i,e&&i==endx,0);
}
if(!e&&!z) dp[cur][s][presum]=ans;
return ans;
}
ll solve(ll n){
int len=0;
while(n){
bit[len++]=n%10;
n/=10;
}
ll ans=0;
for(int i=0;i<len;i++){
ans+=dfs(len-1,i,0,1,1);//以i为支点的len位平衡数个数
}
return ans-(len-1);//len位的数,有可能是全0,因此只需保留一个0,剩下的如00,000,000,。。。都不满足条件
}
int main()
{
int i,j,k,t;
ll l,r;
memset(dp,-1,sizeof(dp));
scanf("%d",&t);
while(t--)
{
//memset(dight,0,sizeof(dight));
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",solve(r)-solve(l-1));
}
return 0;
}