在使用 json.dumps()
序列化数据时,如果数据包含 NaN
(Not a Number)、Infinity
(正无穷)或 -Infinity
(负无穷)等特殊浮点值,会引发 ValueError: Out of range float values are not JSON compliant
,因为标准的 JSON 规范并不支持这些特殊浮点数。
解决方案
为了避免 ValueError
,可以在序列化前对数据进行预处理,将 NaN
和无限值转换为可接受的格式。常见的处理方式包括手动替换这些值或使用自定义的 JSONEncoder
进行编码。
通过 default
参数,在序列化前遍历数据,将 NaN
和无限大的浮点数转换为字符串或 null
以确保 JSON 兼容性。该方法适用于简单的 JSON 结构,其中每个 float
值都会被检查并转换。
import json
def handle_non_compliant_floats(value):
if isinstance(value, float):
if value == float('inf'):
return 'Infinity'
elif value == float('-inf'):
return '-Infinity'
elif value != value: # 检测 NaN
return 'NaN'
return value
data = {
'normal': 1.0,
'high': float('inf'),
'low': float('-inf'),
'undefined': float('nan')
}
# 处理特殊浮点数并序列化
safe_json_data = json.dumps(data, default=handle_non_compliant_floats)
print(safe_json_data)
另一种方式是自定义 JSONEncoder
,覆盖 default
方法,在 JSON 序列化时自动转换这些特殊值。这种方法适用于更复杂的数据结构,因为 json.dumps()
会递归调用 default()
方法处理嵌套对象。
class CustomEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, float):
if obj == float('inf'):
return 'Infinity'
elif obj == float('-inf'):
return '-Infinity'
elif obj != obj: # 处理 NaN
return 'NaN'
return super().default(obj)
# 使用自定义 JSON 编码器
safe_json_data = json.dumps(data, cls=CustomEncoder)
print(safe_json_data)
运行代码后,原本包含 NaN
和 Infinity
的数据成功转换为 JSON 兼容的字符串格式,避免了 ValueError
:
{"normal": 1.0, "high": "Infinity", "low": "-Infinity", "undefined": "NaN"}
此方法确保 JSON 序列化不会因超范围浮点数而失败,同时保留数据的完整性,以便后续处理或存储。
通过预处理数据或使用 JSONEncoder
自定义编码规则,可以有效解决 JSON 序列化时的 ValueError
问题。具体方法的选择取决于数据结构的复杂性,以及对 NaN
和无限值的存储要求。如果需要严格符合 JSON 规范,可以将这些值转换为 null
,如果需要保留信息,可用字符串表示它们的特殊状态。