数据分析工具pandas-profiling使用说明

安装

pip安装

pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip

conda安装

conda install -c conda-forge pandas-profiling

快速上手

  • 分析

    profile = ProfileReport(df)
    
    参数作用类型
    minimal最小化模式:一般用于大型数据集bool
    explorative探索?bool
    title报告的标题string
    pool_size线程数,0为使用全部线程(默认)int
    progress_bar是否显示进度条bool

更多参数用法可以参考官方文档

  • 将结果保存至本地
    profile.to_file("your_report.html")
    

集成到PyCharm

pandas-profiling可以很方便的集成到PyCharm中,方法如下:

  1. 打开PyCharm的File-Settings-Tools-External tools
  2. 点击+进行添加
    在这里插入图片描述
  3. 分别填入如下信息:
  • Name: Pandas Profiling
  • Program: 请自行在Anaconda目录下的Scripts中查找pandas_profiling.exe的路径,如果当前使用的不是base环境需要进入envs的对应虚拟环境下的Scripts中查找pandas_profiling.exe的路径
  • Working Directory: $ ProjectFileDir $
  • Arguments: “$ FilePath $ " " $ FileDir $ / $ FileNameWithoutAllExtensions $_report.html”
    请将上述路径中的空格删除
    在这里插入图片描述
  1. 确定后即可使用,使用方法为在PyCharm中找到需要进行分析的数据文件,右键选中External tools随后选择Pandas Profiling即可,分析结果将会直接保存在数据文件所在的目录下。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值