在 WSL 2 中启用 NVIDIA CUDA

在微软最新发布的 Windows Insider 预览版本中,WSL2 获得了 GPU 计算支持。这意味着 Linux 二进制文件可以利用 GPU 资源,在 WSL 中进行机器学习、AI 开发或是数据科学等工作。微软在今年五月份的 Build 2020 大会上宣布了 WSL 对 GPU 计算的支持,对这项功能的需求在社区中一直拥有很高的呼声。目前,需要在WSL中启用GPU支持需要加入Windows 预览版 SDK,以下为具体步骤。

安装预览版系统

该处成为Win预览体验成员。或是在win10系统设置-更新和安全-Windows预览体验计划中选择加入,记得无论是哪个渠道加入,一定要选取快速通道,随后保存并按照提示重启,随后检查更新即可自动安装最新的快速预览版系统。
在这里插入图片描述
请务必确保win版本高于20150,可在运行(win+R)中执行winver进行确认。
在这里插入图片描述

安装预览版驱动

请勿在 WSL 中安装任何 Linux 显示驱动程序。Windows 显示驱动程序将同时安装本机 Windows 和 WSL 支持的常规驱动程序组件。
在<

### 如何在WSL2安装配置Conda与CUDA #### 安装Ubuntu 20.04 为了确保操作系统的兼容性和稳定性,在Microsoft Store下载并安装Ubuntu 20.04 LTS版本[^3]。 #### 更新系统包管理器 打开新安装的Ubuntu终端,更新软件源列表以获取最新的软件包信息: ```bash sudo apt update && sudo apt upgrade -y ``` #### 启用WSL2功能 确认Windows启用WSL2的支持,并设置默认版本为2: ```powershell wsl --set-default-version 2 ``` #### 安装Miniconda 访问官方文档页面选择适合Linux平台的Miniconda安装文件。通过wget命令下载最新版Miniconda bash脚本至用户主目录下: ```bash cd ~ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh ``` 运行该shell脚本来完成安装流程,期间需同意许可协议并指定安装路径,默认选项通常能满足需求;最后重启Shell使更改生效以便能够正常使用`conda`指令。 ```bash bash Miniconda3-latest-Linux-x86_64.sh exec $SHELL ``` #### 创建Python虚拟环境 利用Conda创建一个新的Python开发环境用于后续工作负载隔离化处理: ```bash conda create --name myenv python=3.9 conda activate myenv ``` #### 安装PyTorch及相关依赖项 依据个人硬件条件挑选合适的预编译二进制轮子来简化安装过程,这里假设已经具备相应的GPU支持情况,则可以执行如下命令行语句快速部署好PyTorch框架及其扩展库: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` #### 测试CUDA可用性 验证当前环境中是否成功集成了CUDA加速能力,可以通过导入特定模块来进行简单测试: ```python import torch print(torch.cuda.is_available()) ``` 如果返回True则说明一切正常,反之可能是因为驱动程序不匹配或其他潜在因素造成的问题。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值