一、概念
回归分析
是一种统计学上分析数据的方法,可以了解两个或多个变量间是否相关、相关 方向与强度,并建立数学模型通过观察特定变量来预测研究者感兴趣的变量。(就是说在不确定自变量和因变量之间函数关系的情况下分析他们之间的表达式)多元回归分析
在自变量很多(有很多的冗余变量,变量直接不完全独立)时,采用逐步回归分析法,筛选自变量,建立预测效果更好的多元回归模型二、案例
数学建模都是定量的解决问题,用数据说话,尽量避免定性的问题以陕西省长武地区1984~1995年的烟蚜传毒病情资料、相关虫情和气象资料为例,建立蚜传病毒病情指数的逐步回归模型,说明逐步回归分析的具体步骤。影响蚜传病毒病情指数的虫情因子和气象因子一共有21个,通过逐步回归,从中选出对病情指数影响显著的因子,从而建立相应的模型。
y:历年病情指数
x1:前年冬季油菜越冬时的蚜量(头/株)
x2:前年冬季极端气温
x3:5月份最高气温
x4:5月份最低气温
x5:3~5月份降水量
x6:4~6月份降水量
x7:3~5月份均温
x8:4~6月份均温
x9:4月份降水量
x10:4月份均温
x11:5月份均温
x12:5月份降水量
x13:6月份均温
x14:6月份降水量
x15:第一次蚜迁高峰期百株烟草有翅蚜量
x16:5月份油菜百株蚜量
x17:7月份降水量
x18:8月份降水量
x19:7月份均温
x20:8月份均温
x21:元月均温
录入数据到excel表格
使用spss进行对数据进行分析
打开spss导入数据–>点击分析–>回归–>线性–>y因变量–>自变量–>年份导入个案标签–>逐步分析方法,选项进入0.15 删除0.20,点击确定
输出文档分析
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.15) POUT(.20)
/NOORIGIN
/DEPENDENT y
/METHOD=ENTER x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21
/RESIDUALS ID(年份).
回归
备注 | ||
已创建输出 | 11-AUG-2019 17:16:34 | |
注释 | ||
输入 | 活动数据集 | 数据集1 |
过滤器 | <无> | |
权重 | <无> | |
拆分文件 | <无> | |
工作数据文件中的行数 | 12 | |
缺失值处理 | 对缺失的定义 | 将用户定义的缺失值视为缺失。 |
使用的个案数 | 统计基于那些对于任何所用变量都不具有缺失值的个案。 | |
语法 | REGRESSION |
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.15) POUT(.20)
/NOORIGIN
/DEPENDENT y
/METHOD=ENTER x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21
/RESIDUALS ID(年份).
资源 处理程序时间 00:00:00.03 耗用时间 00:00:00.19 所需内存量 24688 字节 残差图需要更多内存 0 字节
[数据集1]
警告 |
对于具有因变量 y 的最终模型,由于实现了完美拟合,因此无法计算影响统计。 |
输入/除去的变量a | |||
模型 | 输入的变量 | 除去的变量 | 方法 |
1 | x21, x7, x13, x15, x4, x18, x17, x9, x1, x12, x10b | . | 输入 |
a. 因变量:y |
b. 已达到“容差 = .000”限制。 |
模型摘要b | ||||
模型 | R | R 方 | 调整后 R 方 | 标准估算的误差 |
1 | 1.000a | 1.000 | . | . |
a. 预测变量:(常量), x21, x7, x13, x15, x4, x18, x17, x9, x1, x12, x10 |
b. 因变量:y |
ANOVAa | ||||||
模型 | 平方和 | 自由度 | 均方 | F | 显著性 | |
1 | 回归 | 18.808 | 11 | 1.710 | . | .b |
残差 | .000 | 0 | . | |||
总计 | 18.808 | 11 |
a. 因变量:y |
b. 预测变量:(常量), x21, x7, x13, x15, x4, x18, x17, x9, x1, x12, x10 |
系数a | ||||||
模型 | 未标准化系数 | 标准化系数 | t | 显著性 | ||
B | 标准误差 | Beta | ||||
1 | (常量) | .726 | .000 | . | . | |
x1 | -.001 | .000 | -.026 | . | . | |
x4 | .025 | .000 | .044 | . | . | |
x7 | -.226 | .000 | -.109 | . | . | |
x9 | -.003 | .000 | -.039 | . | . | |
x10 | .021 | .000 | .017 | . | . | |
x12 | -.001 | .000 | -.014 | . | . | |
x13 | .066 | .000 | .058 | . | . | |
x15 | .009 | .000 | .989 | . | . | |
x17 | .001 | .000 | .052 | . | . | |
x18 | -.001 | .000 | -.055 | . | . | |
x21 | -.006 | .000 | -.006 | . | . |
a. 因变量:y |
排除的变量a | ||||||
模型 | 输入 Beta | t | 显著性 | 偏相关 | 共线性统计 | |
容差 | ||||||
1 | x2 | .b | . | . | . | .000 |
x3 | .b | . | . | . | .000 | |
x5 | .b | . | . | . | .000 | |
x6 | .b | . | . | . | .000 | |
x8 | .b | . | . | . | .000 | |
x11 | .b | . | . | . | .000 | |
x14 | .b | . | . | . | .000 | |
x16 | .b | . | . | . | .000 | |
x19 | .b | . | . | . | .000 | |
x20 | .b | . | . | . | .000 |
a. 因变量:y |
b. 模型中的预测变量:(常量), x21, x7, x13, x15, x4, x18, x17, x9, x1, x12, x10 |
残差统计a | |||||
最小值 | 最大值 | 平均值 | 标准偏差 | 个案数 | |
预测值 | .4000 | 4.5600 | 2.7642 | 1.30760 | 12 |
残差 | .00000 | .00000 | .00000 | .00000 | 12 |
标准预测值 | -1.808 | 1.373 | .000 | 1.000 | 12 |
标准残差 | . | . | . | . | 0 |
a. 因变量:y |