机器学习实战之逻辑回归实现预测病马的死亡率

本文介绍如何手动实现逻辑回归算法,以预测马疝病导致的死亡率。通过对数据集的处理,包括处理缺失值,理解并应用梯度上升法找到最佳系数,最终实现预测模型。案例来源于《机器学习实战》。
摘要由CSDN通过智能技术生成

        在讲述完机器学习算法之后,本小节将会带领大家一步一步根据算法原理来自己实现算法设计,而不是直接调用现有的机器学习算法库,通过该阶段的学习与训练,相信你会对算法的原理有更深入的一个认识,对机器学习的认识也会更上一层楼,真正理解算法的工作原理。

        这个案例是来自机器学习实战中的逻辑回归的案例--从疝气症病预测病马的死亡率,其中这个算法的核心是计算出各特征前的系数,即w,利用的方法是梯度上升法。

目录

一、数据集展示与说明

二、处理数据中的缺失值

三、算法原理步骤

四、数据加载

五、项目完整代码


一、数据集展示与说明

数据集说明:该案例的数据集中包含了368个样本和28个特征。数据集中包含了医院检测马疝病的一些指标,有的指标比较主观,有的指标难以测量,例如马的疼痛级别。另外需要说明的是,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有30%的值是缺失的。首先在使用Logistic回归预测病马

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且行且安~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值