在讲述完机器学习算法之后,本小节将会带领大家一步一步根据算法原理来自己实现算法设计,而不是直接调用现有的机器学习算法库,通过该阶段的学习与训练,相信你会对算法的原理有更深入的一个认识,对机器学习的认识也会更上一层楼,真正理解算法的工作原理。
这个案例是来自机器学习实战中的逻辑回归的案例--从疝气症病预测病马的死亡率,其中这个算法的核心是计算出各特征前的系数,即w,利用的方法是梯度上升法。
目录
一、数据集展示与说明
数据集说明:该案例的数据集中包含了368个样本和28个特征。数据集中包含了医院检测马疝病的一些指标,有的指标比较主观,有的指标难以测量,例如马的疼痛级别。另外需要说明的是,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有30%的值是缺失的。首先在使用Logistic回归预测病马