机器学习-31-多变量异常检测LOF算法(实战)

一文读懂异常检测 LOF 算法(Python代码)

1 LOF算法

一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法。

Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于SIGMOD 2000, 到目前已经有3000+的引用。
在这里插入图片描述
在LOF之前的异常检测算法大多是基于统计方法的,或者是借用了一些聚类算法用于异常点的识别(比如,DBSCAN,OPTICS)。这些方法都有一些不完美的地方:
(1)基于统计的方法:通常需要假设数据服从特定的概率分布,这个假设往往是不成立的。
(2)聚类方法:通常只能给出 0/1 的判断(即:是不是异常点),不能量化每个数据点的异常程度。
相比较而言,基于密度的LOF算法要更简单、直观。它不需要对数据的分布做太多要求,还能量化每个数据点的异常程度(o

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值