OPENCV学习笔记 - Harris Corner Detection (角点检测)

本文介绍了Harris Corner Detection的原理,涉及泰勒公式、特征向量、特征值和正定矩阵。通过观看YouTube视频进行复习线代知识。文章包含作者的代码实录,使用摄像头进行实验,结果显示角点检测对圆角键盘的识别效果良好,但参数调优仍有待改进。
摘要由CSDN通过智能技术生成

OPENCV学习笔记 - Harris Corner Detection (角点检测)

原理

牵涉到泰勒公式,特征向量特征值,PCA(这里暂且没有研究),正定矩阵性质
https://www.youtube.com/watch?v=WyrVzTRZuXA&t=1413s
感谢这个youtuber清晰的解释!有忘记线代原理的同学可以移步
下面是我的笔记(乱糟糟乱糟糟
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

这里我用的摄像头哈

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

while True:
    _, frame = cap.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)

    gray = np.float32(gray)
    dst = cv2.cornerHarris(gray, 2,  # 导数平滑的相邻像素的尺寸
                           7,  # 梯度计算的滤波器孔径大小
                           0.15)  # Harris的相关参数

    dst = cv2.dilate(dst, None)

    frame[dst>0.01*dst.max()] = [255, 50, 255]

    cv2.imshow('frame', frame)
    if cv2.waitKey(5) & 0xff == 27:
        break

cv2.destroyAllWindows()
cap.release()

结果

参数调整还有问题,我的圆角键盘corner识别的很好
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值