SSD

一.Introduction

一句话概括:SSD就是关于类别的多尺度RPN网络

基本思路:

  • 基础网络后接多层feature map
  • 多层feature map分别对应不同尺度的固定anchor
  • 回归所有anchor对应的class和bounding box

二.model

SSD

三,损失 

  • 输入:300x300
  • 经过VGG-16(只到conv4_3这一层)
  • 经过几层卷积,得到多层尺寸逐渐减小的feature map
  • 每层feature map分别做3x3卷积,每个feature map cell(又称slide window)对应k个类别和4个bounding box offset,同时对应原图中6(或4)个anchor(又称default box)
    • 38x38, 最后3x3, 1x1三个feature map的每个feature map cell只对应4个anchor,分别为宽高比: 1:1两种,1:2, 2:1两种,因此总共有 38 * 38 * 4 + 19 * 19 * 6 + 10 * 10 * 6 + 5 * 5 * 6 + 3 * 3 * 4 + 1 * 1 * 4 = 8732 个anchor
    • 其他feature map的feature map cell对应6个anchor,分别为宽高比: 1:1两种,1:2, 2:1两种,1:3, 3:1两种
    • 每层的feature map cell对应的anchor计算方法如下
    • 位置:假设当前feature map cell是位于第i行,第j列,则anchor的中心为 ((i+0.5)/|fk|,(j+0.5)/|fk|), fk是第k层feature map的size(比如38)
    • 缩放因子:
      Scale
      其中smin为0.2,smax为0.9,m为添加的feature map的层数,缩放因子就是为不同feature map选择不同的大小的anchor,要求小的feature map对应的anchor尽量大,因为越小的feature map,其feature map cell的感受野就越大
    • anchor宽高:
      width

      height

      其中,ar∈{1,2,3,1/2,1/3},可以理解为在缩放因子选择好anchor尺寸后,用ar来控制anchor形状,从而得到多尺度的各种anchor,当ar=1时,增加一种 sk=sqrt(sk-1sk+1),于是每个feature map cell通常对应6种anchor。

  • 网络的训练目标就是,回归各个anchor对应的类别和位置
  •  

 

SSD损失函数分为两个部分:对应搜索框的位置loss(loc)和类别置信度loss(conf)。(搜索框指网络生成的网格)

定义x_{ij}^{p}=\left\{ 1,0 \right\} 为第i个搜索框和对应的第j个ground truth box,相应的类别为p。目标函数定义为:

L(x,c,l,g)=\frac{1}{N}(L_{conf}(x,c)+\alpha L_{loc}(x,l,g) )

其中,N为匹配的搜索框。如果N=0,loss为零。L_{conf}为预测框l和ground truth box g的Smooth L1 loss,\alpha值通过cross validation设置为1。

L_{loc }定义如下:

其中,l为预测框,g为ground truth。(cx,cy)为补偿(regress to offsets)后的默认框(d)的中心,(w,h)为默认框的宽和高。

L_{conf}定义为多累别softmax loss,公式如下:

更为详细的字母说明如下:

i指代搜索框序号,j指代真实框序号,p指代类别序号,p=0表示背景,

x_{ij}^{p}=\left\{ 1,0 \right\}中取1表示此时第i个搜索框和第j个类别框IOU大于阈值,此时真实框中对象类别为p。

cip表示第i个搜索框对应类别p的预测概率。

四.训练 

样本

  • 正样本
    选择与bounding box jaccard overlap(两张图的交集/并集)大于0.5的anchor作为正样本(Jaccard index 就是IOU)

  • 样本比例
    Hard negative mining:由于负样本很多,需要去掉一部分负样本,先整图经过网络,根据每个anchor的最高类置信度进行排序,选择置信度靠前的样本,这样筛选出来的负样本也会更难识别,并且最终正负样本比例大概是1:3

Loss

还是一如既往的location loss + classification loss,并为location loss添加了系数α(然而实际上α=1)进行平衡,并在batch维度进行平均

SSD Loss

  • x是xijp的集合xijp={1,0},用于判断第i个anchor是否是第j个bounding box上的p类样本
  • c是cip的集合,cip是第i个anchor预测为第p类的概率
  • l是预测的bounding box集合
  • g是ground true bounding box集合

其中定位loss与faster rcnn相同

Location loss

这个式子里的k不是很明确,其实想表达不算背景0类的意思,且前景类只为match的类算location loss

分类loss就是很常用的softmax交叉熵了

classification

核心的内容到这里就讲完了,其实跟YOLO和faster rcnn也很像,是一个用anchor box充当固定的proposal的rpn,并且用多尺度的anchor来适应多种尺度和形状的目标对象。

五。细节

在训练中还用到了data augmentation(数据增强/扩充),每张图片多是由下列三种方法之一随机采样而来

  • 使用整图
  • crop图片上的一部分,crop出来的min面积为0.1,0.3,0.5,0.7,0.9
  • 完全随机地crop

然后这些图片会被resize到固定的大小,随机水平翻转,加入一些图像上的噪声,详情可以参考另一篇论文:

Some improvements on deep convolutional neural network based image classification

从切除实验中,可以看到data augmentaion是很重要的(从65.6到71.6)

Experiment

这个表中还提到了atrous,其实是指空洞卷积,是图像分割(deeplab)领域首先提出的一个卷积层改进,主要是能让测试速度更快。具体可以参考 ICLR2015 Deeplab

从这个表中也可以看出多种形状的anchor可以提升准确率

 参考:https://www.cnblogs.com/hellocwh/p/8729260.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值